1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
3 years ago
5

A river flows with a speed of 0.600 m/s. A student first swims upriver 0.500 km, then turns around and returns to his starting p

oint. The student swims at a constant speed of 1.20 m/s relative to the water. (a) How long does the round trip in the river take? (b) How long would a trip of the same length take in still water? (c) Explain why it takes longer to swim in moving water, considering that it takes longer to swim upriver but shorter to swim downriver.
Physics
1 answer:
DerKrebs [107]3 years ago
6 0

Answer:

a) 1111.0 seconds

b) 833.3 s

c) Because of proportions

Explanation:

a) Total time of round trip is the sum of time upriver and time downriver

t_{total}=t_{up}+t_{down}

Time upriver is calculated with the net speed of student and 0.500 km:

t_{up}=\frac{d_{istance}}{|v_{swimmer}|} ;\\v_{swimmer}=v_{relative to river}+v_{river}=-1.2+0.6=-0.6 m/s\\t_{up}=\frac{500 m}{0.6 m/s}=833.3 s

(Becareful with units 0.5 km= 500m) Similarly of downriver:

t_{down}=\frac{d_{istance}}{|v_{swimmer}|} ;\\v_{swimmer}=1.2+0.6=1.8 m/s\\t_{down}=\frac{500 m}{1.8 m/s}=277.7 s

So the sum is:

t_{total}=1111.0s

b) Still water does not affect student speed, so total time would be simply:

t_{total}=\frac{1000 m}{1.2 m/s}=833.3 s

c) For the upriver trip, student moved half the distance in half speed of the calculation in b), so it kept the same ratio and therefore, same time. So the aditional time is actually the downriver.  

You might be interested in
Describe how substance move from one state to another
Mekhanik [1.2K]
The temperature rises until the water reaches the next change of state — boiling. As the particles move faster and faster, they begin to break the attractive forces between each otherand move freely as steam — a gas. The process by which a substance moves from the liquid state to the gaseousstate is called boiling.
4 0
3 years ago
Read 2 more answers
What special day is when Massachusetts receives the most indirect rays of the sun?
viva [34]

In December solstice Massachusetts receives the most indirect rays of the sun. It happened on the day of 21st of December.

<u>Explanation</u>:

Winter solstice festivities bring "stillness, light, and warmth" into this period of the occasion hustle. Keeping that in mind, we give you this gathering of mysterious occasions to stamp the day of the year (this year, Friday, December 21) with the briefest time of sunlight and the longest night of year. Also, obviously, to respect the arrival of the sun and the more extended days to come.

6 0
3 years ago
The half-life of Iodine-131 is 8.0252 days. If 14.2 grams of I-131 is released in Japan and takes 31.8 days to travel across the
MakcuM [25]

Answer:

Explanation:

Half-life problems are modeled as exponential equations.  The half-life formula is P=P_o\left (\dfrac{1}{2} \right)^{\frac{t}{k}} where P_o is the initial amount, k is the length of the half-life, t is the amount of time that has elapsed since the initial measurement was taken, and P is the amount that remains at time t.

P=14.2\left (\dfrac{1}{2} \right)^{\frac{t}{8.0252}}

<u>Deriving the half-life formula</u>

If one forgets the half-life formula, one can derive an equivalent equation by recalling the basic an exponential equation, y=a b^{t}, where t is still the amount of time, and y is the amount remaining at time t.  The constants a and b can be solved for as follows:

Knowing that amount initially is 14.2g, we let this be time zero:

y=a b^{t}

(14.2)=ab^{(0)}

14.2=a *1

14.2=a

So, a=14.2, which represents out initial amount of the substance, and our equation becomes: y=14.2 b^{t}

Knowing that the "half-life" is 8.0252 days (note that the unit here is "days", so times for all future uses of this equation must be in "days"), we know that the amount remaining after that time will be one-half of what we started with:

\left(\frac{1}{2} *14.2 \right)=14.2 b^{(8.0252)}

\dfrac{7.1}{14.2}=\dfrac{14.2 b^{8.0252}}{14.2}

0.5=b^{8.0252}

\sqrt[8.0252]{\frac{1}{2}}=\sqrt[8.0252]{b^{8.0252}}

\sqrt[8.0252]{\frac{1}{2}}=b

Recalling exponent properties, one could find that  \left ( \frac{1}{2} \right )^{\frac{1}{8.0252}}=b, which will give the equation identical to the half-life formula.  However, recalling this trivia about exponent properties is not necessary to solve this problem.  One can just evaluate the radical in a calculator:

b=0.9172535661...

Using this decimal approximation has advantages (don't have to remember the half-life formula & don't have to remember as many exponent properties), but one minor disadvantage (need to keep more decimal places to reduce rounding error).

So, our general equation derived from the basic exponential function is:

y=14.2* (0.9172535661)^t  or y=14.2*(0.5)^{\frac{t}{8.0252}} where y represents the amount remaining at time t.

<u>Solving for the amount remaining</u>

With the equation set up, substitute the amount of time it takes to cross the Pacific to solve for the amount remaining:

y=14.2* (0.9172535661)^{(31.8)}          y=14.2*(0.5)^{\frac{(31.8)}{8.0252}}

y=14.2* 0.0641450581                    y=14.2*(0.5)^{3.962518068}

y=0.9108598257                              y=14.2* 0.0641450581

                                                        y=0.9108598257

Since both the initial amount of Iodine, and the amount of time were given to 3 significant figures, the amount remaining after 31.8days is 0.911g.

8 0
1 year ago
The geese fly 23 m/s to the south when they migrate for the winter. Identify if this example is speed or velocity.
kari74 [83]

Answer:

Its velocity.

7 0
2 years ago
in 4 seconds, a cheetah can run 112 meters. How fast does this cheetah have to be running? A: 448 m/s || B: 28 m/s || C: 56 m/s
Vladimir [108]

Answer:

B: 28m/s

Explanation:

Use the speed formula

Speed =distance / time

8 0
3 years ago
Read 2 more answers
Other questions:
  • use mass and volume dada to calculate the density of lead mass of lead=567.5g volume of lead=50.0cm cubes what is the density?
    13·1 answer
  • A cylinder with a moving piston expands from an initial volume of 0.250 L against an external pressure of 2.00 atm. The expansio
    6·1 answer
  • A link in a mechanism is to be subjected to a tensile force that varies from 3500 to 500 N in a cyclical fashion as the mechanis
    14·1 answer
  • A 213.7 kg satellite is in a circular orbit of 22,236 miles (35,768 km) in radius. The force keeping the satellite in orbit is 4
    10·2 answers
  • During World War I, the Germans had a gun called Big Bertha that was used to shell Paris. The shell had an initial speed of 0.88
    9·1 answer
  • What was one of the main benefits to the use of the icebox for cooling food? Select all that apply. provided a source for cold w
    5·2 answers
  • 31. If Earth's mass was cut in half, your weight<br> would
    10·1 answer
  • B) What are the only two sources of energy that produce all the energy we use on Earth? What form
    9·1 answer
  • Rahul is carrying a load of 80 kg a distance of 200m in 5 minutes but the same lord is carried by Reena to the same distance in
    9·1 answer
  • A glass of water has a temperature of 31 degrees Celsius. What state of matter is it in?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!