Answer:
Cannot see all the answer choices but, when pressure goes up, volume goes down. So your best bet is to choose the graph that has a downward slant.
Explanation:
Answer:

Explanation:
We have:
diameter of the wheel, 
weight of the wheel, 
mass of hanging object to the wheel, 
speed of the hanging mass after the descend, 
height of descend, 
(a)
moment of inertia of wheel about its central axis:




Hey there!
Your correct answer would be (<span>
Every mass exerts a gravitational force on every other mass.) It really doesn't matter the size in mass what so ever, gravity is stronger than mass, mass in nothing compared to mass. Therefor, gravity exert's mass on any object with any size of mass.
Your correct answer would be
. . .
</span>

<span>
Hope this helps.
~Jurgen</span>
<span>The
_______ is the the distance between two crests or two troughs on a
transverse wave. It is also the distance between compressions or the
distance between rarefactions on a longitudinal wave.</span>
Answer:
Momentum of red car = 5kgm/s
Momentum of blue car = 0kgm/s
Explanation:
Momentum = mass × velocity
For the red car
Mass = 1kg
Velocity = 5m/s
Momentum of the red car = 1kg × 5m/s
Momentum of the red car = 5kgm/s
For the blue car.
Mass = 1kg
Velocity = 0m/s(shows that the blue car is stationery)
Momentum = 1kg ×0m/s
Momentum of the blue car = 0kgm/s