Explanation:
the missing figure in the Question has been put in the attachment.
Then from the figure we can observe that
the center of the sphere is positive, therefore, negative charge will be induced at A.
As B is grounded there will not be any charge on B
Hence the answer is A is negative and B is charge less.
Answer: a) io=233.28 A ( initial current); b) τ=R*C= 22.31 ms; c) 81.7 ms
Explanation: In order to explain this problem we have to use, the formule for the variation of the current in a RC circuit:
I(t)=io*Exp(-t/τ)
and also we consider that io=V/R=(1.5/6.43*10^3)
=233.28 A
then the time constant for the RC circuit is τ=R*C=6.43*10^3*3.47*10^-6
=22.31 ms
Finally the time to reduce the current to 2.57% of its initial value is obtained from:
I(t)=io*Exp(-t/τ) for I(t)/io=0.0257=Exp(-t/τ) then
ln(0.0257)*τ =-t
t=-ln(0.0257)*τ=81.68 ms
Assuming that reaching a height 0 doesn’t stop the ball, and that it accelerates at 9.8 m/s^2, the ball would be traveling at 0.5 + 0.7*9.8 = 7.36 m/s downwards.
Explanation:
The answer is in the pic above
The concept to develop this problem is the Law of Malus. Which describes what happens with the light intensity once it passes through a polarized material.
Mathematically this can be expressed as

Where
I = New intensity after pass through the Polarizer
= Original intensity
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
When the light passes perpendicularly through the first polarizer, the light intensity is reduced by half which will cause the intensity to be
at the output of the new polarizer, mathematically:


Solving to find the angle we have

The orientation angle of the second polarizer relative to the first one is 43.11°