The tires deflated and so that means that you won’t be able to travel
If the potential is given by v = xy - 3z-2, then the electric field has a y-component of X
When the charge is present in any form, a point in space has an electric field that is connected to it. The value of E, often known as the electric field strength, electric field intensity, or just the electric field, expresses the strength and direction of the electric field.
Each location in space where a charge exists in any form can be considered to have an electric field attached to it. The electric force per unit charge is another name for an electric field. The electric field's equation is given as E = F / Q. Volts per meter (V/m) is the electric field's SI unit. Newton's per coulomb unit is the same as this one.
To learn more about electric field please visit-brainly.com/question/15800304
#SPJ4
Answer:
8977.7 kg/m^3
Explanation:
Volume of water displaced = 55 cm^3 = 55 x 10^-6 m^3
Reading of balance when block is immersed in water = 4.3 N
According to the Archimedes principle, when a body is immersed n a liquid partly or wholly, then there is a loss in the weight of body which is called upthrust or buoyant force. this buoyant force is equal to the weight of liquid displaced by the body.
Buoyant force = weight of the water displaced by the block
Buoyant force = Volume of water displaced x density of water x g
= 55 x 10^-6 x 1000 x .8 = 0.539 N
True weight of the body = Weight of body in water + buoyant force
m g = 4.3 + 0.539 = 4.839
m = 0.4937 kg
Density of block = mass of block / volume of block
=
Density of block = 8977.7 kg/m^3
Traveling against currents usually takes longer. Kinda like walking against the wind, you feel the heaviness against your jacket as you push through it. Where when you walking with the wind, it kind of gives your a push. Same for with currents.
In order to make his measurements for determining the Earth-Sun distance, Aristarchus waited for the Moon's phase to be exactly half full while the Sun was still visible in the sky. For this reason, he chose the time of a half (quarter) moon.
<h3 /><h3>How did Aristarchus calculate the distance to the Sun?</h3>
It was now possible for another Greek astronomer, Aristarchus, to attempt to determine the Earth's distance from the Sun after learning the distance to the Moon. Aristarchus discovered that the Moon, the Earth, and the Sun formed a right triangle when they were all equally illuminated. Now that he was aware of the distance between the Earth and the Moon, all he needed to know to calculate the Sun's distance was the current angle between the Moon and the Sun. It was a wonderful argument that was weakened by scant evidence. Aristarchus calculated this angle to be 87 degrees using only his eyes, which was not far off from the actual number of 89.83 degrees. But when there are significant distances involved, even slight inaccuracies might suddenly become significant. His outcome was more than a thousand times off.
To know more about how Aristarchus calculate the distance to the Sun, visit:
brainly.com/question/26241069
#SPJ4