The displacement would be the final position (37) minus the initial position (50) if using the displacement formula.
Last month, we featured IRB best practices (“IRBs: Navigating the Maze” November 2007 Observer), and got the ball rolling with strategies and tips that psychological scientists have found to work. Here, we continue the dissemination effort with the second of three articles by researchers who share their experiences with getting their research through IRB hoops. Jerry Burger from Santa Clara University managed to do the seemingly impossible — he conducted a partial replication of the infamous Milgram experiment. Read on for valuable advice, and look for similar coverage in upcoming Observers. These are the first words I said to Muriel Pearson, producer for ABC News’ Primetime, when she approached me with the idea of replicating Stanley Milgram’s famous obedience studies. Milgram’s work was conducted in the early 1960s before the current system of professional guidelines and IRBs was in place. It is often held up as the prototypic example of why we need policies to protect the welfare of research participants. Milgram’s participants were placed in an emotionally excruciating situation in which an experimenter instructed them to continue administering electric shocks to another individual despite hearing that person’s agonizing screams of protest. The studies ignited a debate about the ethical treatment of participants. And the research became, as I often told my students, the study that can never be replicated. Hope this helps!
Answer: Thermal Energy
Explanation: I know this answer is correct because I had to look in my notebook for the definition
In my own words: Thermal Energy is the energy coming from heat which means it is generated by the movement of tiny particles with different objects.
Hope this helps! :)
Answer:
A) G = m³/kg.s²
B) E = kg.m²/s²
Explanation:
A)
The given relation is:
F = Gm₁m₂/r²
where, the units of all variables are:
F = Force = kg.m/s²
m₁ = m₂ = mass = kg
r = distance = m
G = Gravitational Constant = ?
Therefore,
kg.m/s² = G(kg)(kg)/m²
(kg.m/s²)(m²/kg²) = G
<u>G = m³/kg.s²</u>
<u></u>
B)
The given equation is:
E = mc²
where, the units of all variables are:
m = mass = kg
c = speed = m/s
E = Energy = ?
Therefore,
E = (kg)(m/s)²
<u>E = kg.m²/s²</u>
This is the correct answer, which is not present in any option.