Answer:
t = 5.59x10⁴ y
Explanation:
To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:
(1)
<em>where
: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>
To find A₀ we can use the following equation:
(2)
<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>
From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:
<em>where
: is the tree's carbon mass,
: is the Avogadro's number and
: is the ¹²C mass. </em>
Similarly, from equation (2) λ is:
<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

So, the initial activity A₀ is:
Finally, we can calculate the time from equation (1):
I hope it helps you!
Answer:
The answer is X
Explanation:
Cause the highest points will most likely have the most potential energy
Intensity:
Decibels
Amplitude:
Meters
Frequency: Hertz
<u>Explanation:</u>
The Wave is not visible to eyes and they can easily propagate through vacuum. the average power travelling at a given period of time in a space is the intensity. Decibels is the measure of intensity. it is measured in the decibel scale. The wave's strength and the intensity gives the amplitude of wave. It is measured using meters.
The wave's amplitude and the energy has a direct proportionality. The number occurrence of wave cycles per second refers to the frequency of wave. it is measured in hertz. it is also measured as the number of cycles that occurs per second.
Answer:
I don't think the information is complete
We don't know how many of ANY color are in the bag right now, so there's no way to calculate an answer.
What Tom has to do is make sure that the number of marbles that are NOT blue is NINE TIMES the number of blue ones in the bag.