Filtration
hope this helped
Answer: SO₂ + H₂O → HSO₃ ⁻ + H⁺
Justification:
1) Ionization means formation of ions.
2) Ions are species that are not neutral, they are charged, in virtue of having less or more electrons than protons.
3) Ionization may happen in different environments.
4) Ionic compunds, like Mg(OH)₂ dissociate into ions (ionize) in water. That is the example shown in the fourth option:
Mg(OH)₂ → Mg ²⁺ + 2OH⁻
5) How much a ionic compound dissociates in water (ionize) depends on the Ksp (product solubility constant) which measures the concentrations of the ions that can be in the solution.
6) The Ksp for Mg(OH)₂ is very low, meaning that it will slightly ionize.
7) SO₂ + H₂O forms H₂SO₄, which is a strong acid, meaning that it will ionize fully in water, into the ions HSO₃ ⁻ and H⁺, so the third option is a good example of ionization.
Answer: Rod X.
Explanation:
Ok, the electricity starts in the top left part. First, it must travel in the X rod, then it keeps traveling until it reaches the parallel path, and it can go to the Z rod, to the Y rod, or to both of them, and then it reaches the bulb (the circle with a X inside of it).
We know that two rods are conductors of electricity.
Now, suppose the case where rods Z and Y are the ones that conduct electricity, this means that X does not conduct electricity, then when the current reaches to X it stops (because X does not conduct) then the electricity never reaches the rods Z and Y, and then the electricity never reaches the bulb, but we know that the bulb lights up, so we must have that X is one of the conducting rods.
Then, if for example, Y does not conduct electricity, the electricity still can run through the Z rod and eventually reach the bulb.
So we can conclude that the rod that is definitely a conductor of electricity is rod X
Answer:
c. HF can participate in hydrogen bonding.
Explanation:
<u>The boiling points of substances often reflect the strength of the </u><u>intermolecular forces</u><u> operating among the molecules.</u>
If it takes more energy to separate molecules of HF than of the rest of the hydrogen halides because HF molecules are held together by stronger intermolecular forces, then the boiling point of HF will be higher than that of all the hydrogen halides.
A particularly strong type of intermolecular attraction is called the hydrogen bond, <em>which is a special type of dipole-dipole interaction between the hydrogen atom in a polar bond</em>, such as N-H, O-H, or F-H, and an electronegative O, N, or F atom.