Bonds formed between atoms can be classified as ionic and covalent
Ionic bonds are formed between atoms that have a high difference in the electronegativity values.
In contrast, bonds formed between atoms that have a difference in electronegativity lower than the ionic counterparts are polar covalent bonds. If the atoms have very similar electronegativities, they form non-polar covalent bonds.
In H2S, the S atom is bonded to 2 H atoms. The electronegativity of H = 2.2 and S= 2.56. Since the difference is not high the bond formed will be covalent (polar covalent).
Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L
Add 450 million grams to the solution
Answer:
For iron
Final temperature = 54,22°C
For copper
Final Temperature = 63.67 °C
Explanation
Hello,
You are using a torch to warm up a block of iron that has an initial temperature of 32°C.
The first you have to know is that the "heat capacity" could simply define as the heat required to go from an initial temperature to a final temperature.
So you need to use the heat capacity equation as follow in the paper.
The equation has to have all terms in the same units, so:
q = 12000 J
s = 0.450 J / g °C
m = 1200 g
Ti = 32 °C
Lithium dihydrogen phosphate