<span>When water freezes to form ice, its volume expands. However, we know from conservation of mass that the mass of the ice is the same as the mass of the water. Since density is defined fundamentally as mass / volume, and we have an expanding volume at a constant mass, the denominator of the equation grows, and thus the density of ice is lower than that of liquid water.</span>
That's up to you because you have to go through the book to see their expressions
Answer:
D. Metallic atoms have valence shells that are mostly empty, which
means these atoms are more likely to give up electrons and allow
them to move freely.
Explanation:
Metals usually contain very few electrons in their valence shells hence they easily give up these few valence electrons to yield metal cations.
In the metallic bond, metal cations are held together by electrostatic attraction between the metal ions and a sea of mobile electrons.
Since metals give up their electrons easily, it is very easy for them to participate in metallic bonding. They give up their electrons easily because their valence shells are mostly empty, metal valence shells usually contain only a few electrons.
When an astronaut travels from the earth to the moon, her weight changes, but her mass remains constant. <em>(C ).</em>
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2.
So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density.
So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave.
Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>