Answer:
6.26 m/s
Explanation:
Pretty slow.... the PE (Potential Energy) at 2m will be converted to KE (Kinetic Energy) at the bottom of the track (neglecting friction)
PE = KE
mgh = 1/2 mv^2 divide both sides of the equation by 'm'
gh = 1/2 v^2 multiply both sides by 2
2 gh = v^2 take sqrt of both sides
v = sqrt ( 2gh) = sqrt ( 2*9.81*2) = 6.26 m/s
Ans: Beat Frequency = 1.97HzExplanation:
The fundamental frequency on a vibrating string is

<span> -- (A)</span>
<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>
Plug in the values in Equation (A)
<span>so </span>

<span> = 197.97Hz </span>
<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
Answer:
7500 Newtons
Explanation:
Mass of the sportscar= 1500 kg
Acceleration of the sportscar= 5m/s^2
Hence, let the Force acting on it be F

Acceleration is F/M so the answer would be 12m/s^2