Answer:
The acceleration of the mass is 2 meters per square second.
Explanation:
By Newton's second law, we know that force (
), measured in newtons, is the product of mass (
), measured in kilograms, and net acceleration (
), measured in meters per square second. That is:
(1)
The initial force applied in the mass is:


In addition, we know that force is directly proportional to acceleration. If the smaller force is removed, then the initial force is reduced to
of the initial force. The acceleration of the mass is:


The acceleration of the mass is 2 meters per square second.
Answer:
7772.72N
Explanation:
When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.
Now which direction is the static friction, assume that it is pointing inward so
Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N
Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.
Substract two consecutive terms of the sequence to see if there is a common difference:

As we can see, there is a common difference of -6.
Then, if a number of the sequence is given, the next one can be found by adding -6 (which is the same as subtracting 6).
Notice that the first term of the sequence is 3.
Then, the rule for the sequence is to start with 3 and add -6 repeatedly.
Therefore, the correct choice is option A) Start with 3 and add -6 repeatedly.
Answer:
this makes no since so i cant help you here sorry