Answer:
(a) Most reactive
Metal B
Metal D
Metal A
Least reactive
Metal C
(b) (i) Bubbles should form very slowly
(ii) No reaction takes place
Explanation:
(a) The given metals arranged in their order of reactivity are;
Most reactive
Metal B
Metal D
Metal A
Least reactive
Metal C
The other of reactivity is based on the nature of their reactivity of the metals in air
(b) (i) Based on the reactivity of the metals in air, whereby metal A reacts very slowly and an oxide is formed, we have that, based on the reactivity of the metal A, when mixed with dilute hydrochloric acid, bubbles should form very slowly
(ii) Similarly, given that metal C is unreactive, we have that when small pieces of metal C are added to dilute hydrochloric acid, no reaction takes place.
Charge will decreases.
A parallel plate capacitor when it is fully charged to voltage V is given as:
C = Q/V
The capacitance of parallel plate capacitor with two plates of Area A separated by distance d and no dielectric material between plates is
C = ε₀ A /d
since from above equation it shows C is proportional to Q and also C is inversely proportional to distance d.
So, ATQ when d increases C will decrease which in result decreases charge on the capacitor.
Thus, Charge will decrease.
Learn more about capacitance here:
brainly.com/question/17115454
#SPJ4
Answer:
sorry I dont now the answer bro i am so sorry xd ;'(
1.commensalism
2. pred-prey
3. parasite-host
4.commensalism
Answer:
THE BOHR SHIFT ON THE OXYGEN-HEMOGLOBIN DISSOCIATION CURVE IS PRODUCED BY CHANGES IN THE CONCENTRATION OF CARBON IV OXIDE.
Explanation:
The oxygen-hemoglobin dissociation curve shows the relationship between the saturated hemoglobin concentration and oxygen. It shows how the blood hold on to and releases oxygen. The Bohr shift can occur as a result of changes in concentration of carbon iv oxide and other factors such as acidity or pH, 2,3-bisphosphoglycerate, exercise, also temperature of the body. These factors contributes to the right or left shift on the curve. Carbon iv oxide prevents the binding of oxygen to the hemoglobin. The is because hemoglobin has the same binding site for both oxygen and carbon iv oxide. Carbon iv oxide increase also leads to a change in the pH of the blood through the formation of bicarbonate ion. Bicarbonate ion formation causes reduced acidity and therefore lead a shift in the dissociation curve for more of the carbon iv oxide to be excreted as hemoglobin's affinity for oxygen reduces. And when the concentration of carbon iv oxide is low in the plasma, acidity increases and this provides more affinity for oxygen by the hemoglobin.