1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
3 years ago
6

What is the difference between mass and weight?​

Physics
1 answer:
PIT_PIT [208]3 years ago
4 0
Mass: the amount of matter an object contains
Weight: mass•acceleration due to gravity(9.8m/s) / the force of gravity acting on an object
You might be interested in
A horse began running due east and covered 25 km in 4.0 hr. What is the average velocity of the horse?
Darina [25.2K]
<span>B) 6.25 km/hr due east </span>
3 0
3 years ago
Read 2 more answers
Consider a uniformly charged sphere of radius Rand total charge Q. The electric field Eout outsidethe sphere (r≥R) is simply tha
AlexFokin [52]

1) Electric potential inside the sphere: \frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2) Ratio Vcenter/Vsurface: 3/2

3) Find graph in attachment

Explanation:

1)

The electric field inside the sphere is given by

E=\frac{1}{4\pi \epsilon_0}\frac{Qr}{R^3}

where

\epsilon_0=8.85\cdot 10^{-12}F/m is the vacuum permittivity

Q is the charge on the sphere

R is the radius of the sphere

r is the distance from the centre at which we compute the field

For a radial field,

E(r)=-\frac{dV(r)}{dr}

Therefore, we can find the potential at distance r by integrating the expression for the electric field. Calculating the difference between the potential at r and the potential at R,

V(R)-V(r)=-\int\limits^R_r  E(r)dr=-\frac{Q}{4\pi \epsilon_0 R^3}\int r dr = \frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)

The potential at the surface, V(R), is that of a point charge, so

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore we can find the potential inside the sphere, V(r):

V(r)=V(R)+\Delta V=\frac{Q}{4\pi \epsilon_0 R}+\frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2)

At the center,

r = 0

Therefore the potential at the center of the sphere is:

V(r)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})\\V(0)=\frac{3Q}{8\pi \epsilon_0 R}

On the other hand, the potential at the surface is

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore, the ratio V(center)/V(surface) is:

\frac{V(0)}{V(R)}=\frac{\frac{3Q}{8\pi \epsilon_0 R}}{\frac{Q}{4\pi \epsilon_0 R}}=\frac{3}{2}

3)

The graph of V versus r can be found in attachment.

We observe the following:

- At r = 0, the value of the potential is \frac{3}{2}V(R), as found in part b) (where V(R)=\frac{Q}{4\pi \epsilon_0 R})

- Between r and R, the potential decreases as -\frac{r^2}{R^2}

- Then at r = R, the potential is V(R)

- Between r = R and r = 3R, the potential decreases as \frac{1}{R}, therefore when the distance is tripled (r=3R), the potential as decreased to 1/3 (\frac{1}{3}V(R))

Learn more about electric fields and potential:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
Why does sound travel faster in water than in air?
mars1129 [50]

Answer:

C.

Explanation:

3 0
3 years ago
Read 2 more answers
What is the system that pumps blood throughout the body
Jobisdone [24]

The human heart is an organ that pumps blood throughout the body via the circulatory system, supplying oxygen and nutrients to the tissues and removing carbon dioxide and other wastes.

5 0
3 years ago
Read 2 more answers
Suddenly a worker picks up the bag of gravel. Use energy conservation to find the speed of the bucket after it has descended 2.3
fiasKO [112]

Explanation:

A worker picks up the bag of gravel. We need to find the speed of the bucket after it has descended 2.30 m from rest. It is case of conservation of energy. So,

\dfrac{1}{2}mv^2=mgh\\\\v=\sqrt{2gh}

h = 2.3 m

v=\sqrt{2\times 9.8\times 2.3} \\\\v=6.71\ m/s

So, the speed of the bucket after it has descended 2.30 m from rest is 6.71 m/s.

8 0
3 years ago
Other questions:
  • Why is it sensible on diagrams to represent a force by an arrow?
    6·1 answer
  • A rubbit gets down from a rump which its /\x=0.85m in 0.5s, The rubbit's mass is 2kg, what is the net Force?
    7·1 answer
  • Place these bodies of our solar system in the proper order of formation.
    13·2 answers
  • A cosmic ray electron moves at 7.50×106 m/s perpendicular to the Earth’s magnetic field at an altitude where field strength is 1
    10·1 answer
  • A constant volume perfect gas thermometer indicates a pressure of 6.69 kPaat the triple point of water (273.16 K). (a) What chan
    12·1 answer
  • A train travels 2km in 100 seconds. find the velocity of the train
    13·1 answer
  • a wire is carrying a 2.45 A current. at what distance from the wire is the magnetic field 1.00x10^-6t
    6·1 answer
  • Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and
    8·1 answer
  • What does Newton's first law of motion state? (3 points) a Every action has an equal and opposite reaction. b A body at rest wil
    13·2 answers
  • hen approaching a curve, it is best to: A. Search for possible collision traps and escape paths B. Stay close to the centerline
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!