34g
Considering total mass as100g
I am sorry if it’s wrong
Correction: The temperature change is from 20 °C to 30 °C.
Answer:
Cp = 1.0032 J.g⁻¹.°C⁻¹
Solution:
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 5016 J
m = mass = 500 g
Cp = Specific Heat Capacity = ??
ΔT = Change in Temperature = 30 °C - 20 °C = 10 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 5016 J / (500 g × 10 °C)
Cp = 1.0032 J.g⁻¹.°C⁻¹
Answer:
The hydrogen ion concentration in a solution, [H+], in mol L-1, can be calculated if the pH of the solution is known.
pH is defined as the negative logarithm (to base 10) of the hydrogen ion concentration in mol L-1 pH = -log10[H+] ...
[H+] in mol L-1 can be calculated using the equation (formula): [H+] = 10-pH
<u>Answer:</u> The correct answer is option A.
<u>Explanation:</u>
Nuclear fission reactions are a type of nuclear reactions in which larger nuclei breaks apart into two or more smaller fragment releasing alpha, gamma of beta particles.
There are 3 types of particles that can be released during this process:
1. Alpha particles: These particles are released when a nuclei undergoes alpha-decay process.

2. Beta particles: These particles are released when a nuclei undergoes beta-minus decay process.

3. Gamma radiations: these radiations are released when an unstable nuclei gives off excess energy by a process of spontaneous electromagnetic process.

Hence, any of these particles can be released during the process of fission reaction with smaller atoms.
Therefore, the correct answer is option A.