Answer:
The answer is D. 0.60 L
Explanation:
The balanced reaction equation including states of matter is;
H₂SO₄(aq) + 2NaOH(aq) → Na₂SO₄(aq) + 2H₂O(l)
More simple:
H2SO4 + 2NaOH → Na2SO4 + 2H2O
Now, we can see from this reaction equation that the mole ratio of NaOH to H2SO4 is 2:1
Number of moles of H2SO4 reacted = 1.2 moles
Hence;
2 moles of NaOH reacts with 1 mole of H2SO4
x moles of NaOH reacts with 1.2 moles of H2SO4
x = 2 * 1.2/1 = 2.4 moles of NaOH
Recall that;
Number of moles = Concentration * Volume
Volume = number of moles/concentration
Volume of NaOH is obtained from;
Volume = 2.4 moles/ 4.0 M
Volume = 0.60 L
Answer:
SF2 > H2O > PBr3 > NCl3
Explanation:
Compare the electronegativity values for the atoms and classify the nature of the bonding based on the electronegativity difference.
P has an electronegativity of 2.1, while Br has an electronegativity of 2.96. The difference is 0.86, indicating that these atoms will form covalent bonds.
S has an electronegativity of 2.58 while F has an electronegativity of 4.0. The difference is 1.42, indicating that these atoms will form polar covalent bonds.
O has an electronegativity of 3.5 while H has an electronegativity of 2.1. The difference is 1.4, indicating that these atoms will form polar covalent bonds.
N has an electronegativity of 3.04, whereas Cl has an electronegativity of 3.5. This difference of 0.46 indicates that these atoms will form covalent bonds.
We know that the greater the electronegativity, the higher the polarity. In decreasing order of polarity, we have:
SF2 > H2O > PBr3 > NCl3
Well the width is 0.20 meters. Since there are a hundred centimeters in a meter, we just have to move the decimal point two times to the right to get a 20 centimeter width.
Answer
hope it helps
Explanation:
In real life, heavier objects sometimes fall faster than light objects, but not because of gravity. Gravity makes all objects increase their speed at the same rate, regardless of how big they are. But if you drop 2 things outside, the air molecules may slow down one thing more than another.
Answer : The final concentration of the seawater is, 2.909 mole/L
Explanation :
Formula used for osmotic pressure :

where,
= osmotic pressure = 70.0 bar = 70 atm
R = solution constant = 0.0821 Latm/moleK
T= temperature of solution = 
C = final concentration of seawater = ?
Now put all the given values in the above formula, we get the concentration of seawater.


Therefore, the final concentration of the seawater is, 2.909 mole/L