Answer:
It's option d - Negative acceleration
Explanation:
- Let's start by demonstrate why <em>it's not option b - Speed : </em>Speed is a scalar quantity so it can not be represented by a vector
- Let's check that <em>the green vectors represent velocity</em> (velocity is a vector quantity, velocity is a direction aware, while speed is just a scalar)
- Now let's show that the circled vectors are acceleration vectors:
Mathematically position X , velocity V and acceleration A are:
and 
Where X, V, A are vectors and
indicates the derivate a of a time is equal to b.
So, this show that acceleration is a rate respect of time of velocity ⇒ When acceleration is positive, velocity increments, when acceleration is negative, velocity decrements.
<em>The above explanation correspond to the motion map shown, getting demonstrated that the answer is D - Negative acceleration </em>
Answer:
wire 66.0 cm long carries a 0.750 A current in the positive direction of an x axis through a magnetic field $$\vec { B } = ( 3.00 m T ) \hat { j } ...
Top answer · 1 vote
Answer:
13.309 m/s²
Explanation:
Length from shoulder to hand, l = 30 cm = 0.3 m
initial velocity, u = 1 m/s
final velocity, v = 2.5 m/s
time, t = 3 s
Let the tangential acceleration is a.
by using first equation of motion
v = u + at
2.5 = 1 + 3 a
a = 0.5 m/s²
Let the centripetal acceleration is a'.
a' = v'²/l
a' = 2 x 2 / 0.3
a' = 13.3 m/s²
The tangential acceleration and the centripetal acceleration are both perpendicular to each other. So, the net acceleration is given by


A = 13.309 m/s²
Newton's third law<span> is for every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. </span>