1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksian1 [2.3K]
4 years ago
9

Streams compensate for changes in their systems by adjusting other factors in order to return to _______

Physics
1 answer:
Tatiana [17]4 years ago
4 0

Answer:

Equilibrium.

Explanation:

Streams compensate for changes in their systems by adjusting other factors in order to return to equilibrium because so as to maintain their watershed. When the surface runoff move downslope, it also cause a concentration in small areas and create small channels of streams. These channels normally allow the flow of water during rainfall.

You might be interested in
Which of the following types of electromagnetic radiation has the longest wavelength? choose one answer.
Setler79 [48]
The right answer is red light
8 0
3 years ago
in a longitudinal wave, the motion of the disturbance is in what direction relative to the wave motion?
VARVARA [1.3K]

Answer:

Longitudinal waves have the same direction of vibration as their direction of travel. This means that the movement of the medium is in the same direction as the motion of the wave.

4 0
3 years ago
I need help it is due today
siniylev [52]

Answer:

Option 3. The tennis ball began from rest and rolls at a rate of 14.7 m/s safer 1.5 seconds.

Explanation:

To know the the correct answer to the question, it is important that we know the definition of acceleration.

Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:

a = (v – u) /t

Where

a => acceleration

v => final velocity

u => Initial velocity

t => time

With the above information in mind, let us consider the options given in the question above to know which conform to the difinition of acceleration.

For Option 1,

We were told that the tennis ball has the following:

Distance = 4 m

Time = 1.5 s

This talks about the speed and not the acceleration.

Speed = distance / time

For Option 2,

We were only told about the average speed and nothing else.

For Option 3,

We were told that the tennis ball have the following:

Initial velocity (u) = 0 m/s

Final velocity (v) = 14.7 m/s

Time = 1.5 s

This talks about the acceleration.

a = (v – u) /t

For Option 4,

We were only told that the tennis rolls to the right at an average speed. This talks about the average velocity. We need more information like time to justify the acceleration.

From the above illustrations, option 3 gives the correct answer to the question.

8 0
3 years ago
What is the wavelength and frequency of a photon emitted by transition of an electron from a n- orbit to a n-1 orbit'?
PolarNik [594]

Answer:

\lambda=9.12\times 10^{-8}}\times \frac {{{{(n-1)}^2}\times n^2}}{1-2n}\ m

\nu=3.29\times 10^{15}\frac{1-2n}{{{(n-1)}^2}\times n^2}}\ s^{-1}

Explanation:

E_n=-2.179\times 10^{-18}\times \frac{1}{n^2}\ Joules

For transitions:

Energy\ Difference,\ \Delta E= E_f-E_i =-2.179\times 10^{-18}(\frac{1}{n_f^2}-\frac{1}{n_i^2})\ J=2.179\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J

n_i=n\ and\ n_f=n-1

Thus solving it, we get:

\Delta E=2.179\times 10^{-18}(\frac{1}{n^2} - \dfrac{1}{{(n-1)}^2})\ J

\Delta E=2.179\times 10^{-18}(\frac{{(n-1)}^2-n^2}{{{(n-1)}^2}\times n^2}})\ J

\Delta E=2.179\times 10^{-18}(\frac{n^2+1-2n-n^2}{{{(n-1)}^2}\times n^2}})\ J

\Delta E=2.179\times 10^{-18}(\frac{1-2n}{{{(n-1)}^2}\times n^2}})\ J

Also, \Delta E=\frac {h\times c}{\lambda}

Where,  

h is Plank's constant having value 6.626\times 10^{-34}\ Js

c is the speed of light having value 3\times 10^8\ m/s

So,

\frac {h\times c}{\lambda}=2.179\times 10^{-18}(\frac{1-2n}{{{(n-1)}^2}\times n^2}})\ J

\lambda=\frac {6.626\times 10^{-34}\times 3\times 10^8}{2.179\times 10^{-18}}\times \frac {{{{(n-1)}^2}\times n^2}}{{1-2n}}\ m

So,

\lambda=9.12\times 10^{-8}}\times \frac {{{{(n-1)}^2}\times n^2}}{1-2n}\ m

Also, \Delta E=h\times \nu

So,

h\times \nu=2.179\times 10^{-18}\frac{1-2n}{{{(n-1)}^2}\times n^2}}

\nu=\frac {2.179\times 10^{-18}}{6.626\times 10^{-34}}\frac{1-2n}{{{(n-1)}^2}\times n^2}}\ s^{-1}

\nu=3.29\times 10^{15}\frac{1-2n}{{{(n-1)}^2}\times n^2}}\ s^{-1}

8 0
4 years ago
In which state of matter are the particles CLOSEST together?
SCORPION-xisa [38]
I am pretty sure it's solids
6 0
3 years ago
Read 2 more answers
Other questions:
  • 1A, 3B, and 7A are examples of group ___ on the periodic table.
    7·2 answers
  • The impulse experienced by a body is equivalent to the body’s change in
    9·1 answer
  • When discussing the earths magnetic field we could say that the earth has a
    11·1 answer
  • The water flowing through a 1.8 cm (inside diameter) pipe flows out through three 1.2 cm pipes. (a) If the flow rates in the thr
    8·1 answer
  • 2. According to research, what is the most reliable form of identifying potentially effective reinforcers?
    8·1 answer
  • A sparrow is flying around in a circle at a constant speed and height. there is air resistance. In what direction is the net for
    15·2 answers
  • An atom has 35 protons. what element is it?
    10·2 answers
  • To halt the decline in biodiversity, we must do which of the following?
    6·1 answer
  • Ashley decides to enter her pet turtle in a race. She knows her turtle can travel at a rate of 2 meters per hour. The race track
    8·1 answer
  • The Surface Pressure at Leh, Ladakh is 800 mb. Now, assuming that Leh is at an altitude of 3500 m and every 100 m increase in he
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!