Answer:
31302 Volts and 55/111 Amps (≈0.5)
Explanation:
Secondary voltage / 141 = 1110 / 5
Secondary voltage = (1110*141) / 5
Secondary voltage = 31302
Amperage = 110/ (31302/141) = 55/111
Answer:
In ideal case, when no resistive forces are present then both the balls will reach the ground simultaneously. This is because acceleration due to gravity is independent of mass of the falling object. i.e. g = GM/R² where G = 6.67×10²³ Nm²/kg², M = mass of earth and R is radius of earth.
Let us assume that both are metallic balls. In such case, we have to take into account the magnetic field of earth (which will give rise to eddy currents, and these eddy currents will be more, if surface area will be more) and viscous drag of air ( viscous drag is proportional to radius of falling ball), then bigger ball will take slightly more time than the smaller ball.
Explanation:
In ideal case, when no resistive forces are present then both the balls will reach the ground simultaneously. This is because acceleration due to gravity is independent of mass of the falling object. i.e. g = GM/R² where G = 6.67×10²³ Nm²/kg², M = mass of earth and R is radius of earth.
Let us assume that both are metallic balls. In such case, we have to take into account the magnetic field of earth (which will give rise to eddy currents, and these eddy currents will be more, if surface area will be more) and viscous drag of air ( viscous drag is proportional to radius of falling ball), then bigger ball will take slightly more time than the smaller ball.
Question 1
To find centripetal acceleration, use the formula : centripetal acceleration = v^2/r
so answer would be (3.71)^2/42.85=0.32 (2d.p.)
Question 2
Force =ma
a= (9.98)^2/31.77=3.1350
Force= 3.1350 * 56.63 = 177.54 (2 d.p.)
<span>The formula for frequency is speed of light divided by wavelength. 650 nm represents the wavelength and 3x10^8 m/s is the speed of light. If you convert 650nm to meters you get 6.5x10^-7 m so you can divide using the formula above, giving you 4.6x10^14 1/s or Hz, the unit of frequency in Physics.</span>