Answer:
Q= -6900 J
Explanation:
use the formula Q=mC(T_2 - T_1) and sub in givens
Q=mC(T_2 - T_1)
Q= (200 g)(0.444 J/g°C)(22-100)
Q= -6900 J
The negative sign means heat is lost, which agrees with the decrease in temperature
GPE=mgh
m= 12.5kg
g= 9.81 always
h=?
568=12.5*9.81*h
Solve for h
You will get 4.63m
Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.
KE = (1/2)·(mass)·(speed)²
KE = (1/2)·(50 kg)·(18 m/s)²
KE = (25 kg)·(324 m²/s²)
KE = 8,100 kg-m²/s²
KE = 8,100 Joules
Answer:

Explanation:
When unpolarized light passes through the first polarizer, the intensity of the light is reduced by a factor 1/2, so
(1)
where I_0 is the intensity of the initial unpolarized light, while I_1 is the intensity of the polarized light coming out from the first filter. Light that comes out from the first polarizer is also polarized, in the same direction as the axis of the first polarizer.
When the (now polarized) light hits the second polarizer, whose axis of polarization is rotated by an angle
with respect to the first one, the intensity of the light coming out is
(2)
If we combine (1) and (2) together,
(3)
We want the final intensity to be 1/10 the initial intensity, so

So we can rewrite (3) as

From which we find


