For the purpose we will use solution dilution equation:
c1xV1=c2xV2
Where, c1 - concentration of stock solution; V1 - a volume of stock solution needed to make the new solution; c2 - final concentration of new solution; V2 - final volume of new solution.
c1 = 5.00 M
c2 = 0.45 M
V1 = ?
V2 = 108 L
When we plug values into the equation, we get following:
5 x V1 = 0.45 x 108
<span>V1 = </span>9.72 L
Answer;
= 64561.95 g/mole
Explanation;
mass of Fe in 100g = .346g
= .346 / 55.8452 moles
= 0.0061957 moles
These represent 4 moles of Fe in the molecule so moles of hemaglobin
= 0.0061957/4
= 0.0015489 moles
these are in 100 g so mass of 1 mole = 100 / 0.0015489
= 64561.95 g / mole
molar mass of hemoglobin = 64561.95 g/mole
A mole contains Avogadro’s number of particles of a substance.
Since that is a lengthy one I to have the same problem in chem. I always trust google and ask question but question of the elements of the periodic table and one by one it will give you the answer and will tell you the formula and the cations