Boiling Point, Melting Point, Viscosity, Surface Tension. Decrease: Vapor Pressure.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
Frequency is defined as the number of waves per second. In this machine 25 waves pass in one second.
We need to calculate the number of waves that pass a particular point during one second.
During 2 seconds -25 waves
Therefore in one second - 25/2 = 12.5 waves/s.
1 wave per second has the unit Hertz (Hz)
Therefore answer is 12.5 Hz
2 ICl + H2 ----> I2 + 2 HCl
as given that rate is first order with respect to ICl and second order with respect to H2
The rate law will be
Rate = K [ICl] [ H2]^2
b) Given that K = 2.01 M^-2 s^-1
Concentrations are
[ICl] = 0.273 m and [H2] = 0.217 m
Therefore rate = 2.01 X (0.273)(0.217)^2 = 0.0258 M / s