Answer:
The number of neutron in the Aluminium Isotope is :
B. 14
Explanation:
Isotopes : These are the atoms which have same atomic number but have different mass number.
<u>This image shows the average atomic mass of Al element because it is in decimals</u>.
Atomic mass = 26.98154
(Note : mass number of single isotope can never be in decimals)
It is the average of mass of different isotopes of Al
Major Isotopes of
are :
......atomic mass = 26
.......atomic mass = 27
mass of Al given in image(26.98) is nearly equal to mass of 2nd isotope(27)
mass of 
Now calculate the neutron in 
Number of neutron = mass number - atomic number
= 27 - 13
Number of neutron = 14
(Atomic mass is same as mass number)
Answer:

Explanation:
Hello,
In this case, the combustion of methane is shown below:

And has a heat of combustion of −890.8 kJ/mol, for which the burnt moles are:

Whereas is consider the total released heat to the surroundings (negative as it is exiting heat) and the aforementioned heat of combustion. Then, by using the ideal gas equation, we are able to compute the volume at 25 °C (298K) and 745 torr (0.98 atm) that must be measured:

Best regards.
<span>Their outer shells are filled So much that they don't need to bond or react with any other atoms.</span>
Ionization energy refers to the amount of energy needed to remove an electron from an atom. Ionization energy decreases as we go down a group. Ionization energy increases from left to right across the periodic table.
<h3>What is ionization energy?</h3>
Ionization is the process by which ions are formed by the gain or loss of an electron from an atom or molecule.
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
When we move across a period from left to right then there occurs a decrease in atomic size of the atoms. Therefore, ionization energy increases along a period but decreases along a group.
Smaller is the size of an atom more will be the force of attraction between its protons and electrons. Hence, more amount of energy is required to remove an electron.
Thus, we can conclude that the energy required to remove an electron from a gaseous atom is called ionization energy.
Learn more about the ionization energy here:
brainly.com/question/14294648
#SPJ1