The molarity is count by dividing the mole of the solute within 1 liter of solvent. In this case, the KNO3 is 16.8g with 101.11 g/mol molar mass. Then we need to find the mol first. The calculation would be: 16.8g / (101.11g/mol)= 0.0166 mol.
Then the molarity would be: 0.0166mol/ 0.3l= 0.0498= 0.0553 M
Answer: Statements (A), and (C) are correct.
Explanation:
The statements that are true are as follows.
- Particles in a liquid need to move more slowly in order to freeze.
When a liquid freezes the molecules get attracted towards each other. This attraction of particles occurs slowly. Hence, this statement is true.
- Attractive forces between the particles in a liquid are broken when a liquid boils.
When temperature is raised, the molecules in a liquid gains kinetic energy and start to move quickly in random directions. As a result, liquid state changes to gaseous state. Hence, this statement is true.
If the attractive force between gas molecules have to be increased, they should be moving slower instead because moving faster does not help attracting molecules together.
Hence, the statement particles in gas move fast enough to make more attractive forces when the gas condenses is not true.
It’s either the first or second one
I think it’s the first one - the outer cells of the blastocyst
Well. Depends.
You plan on doing a school project?
You should try baking soda and vinegar, almost everyone knows about this.
Orr you can use mentos and soda.
Or for fun, just get a watermelon or any fruit and use rubber bands all around it until it goes BOOM!
Hope this helps :D