Answer is: mass od zinc is 392,28 g.
N(Zn) = 3,6·10²⁴.
n(Zn) = N(Zn) ÷ Na.
n(Zn) = 3,6·10²⁴ ÷ 6·10²³ 1/mol.
n(Zn) = 6 mol.
m(Zn) = n(Zn) · M(Zn).
m(Zn) = 6 mol · 65,38 g/mol.
m(Zn) = 392,28 g.
Na - Avogadro number.
n - amount of substance.
M - molar mass.
Human organisms, and animals can also be infected by Ebola
From the calculation, the molar mass of the solution is 141 g/mol.
<h3>What is the molar mass?</h3>
We know that;
ΔT = K m i
K = the freezing constant
m = molality of the solution
i = the Van't Hoft factor
The molality of the solution is obtained from;
m = ΔT/K i
m = 3.89/5.12 * 1
m = 0.76 m
Now;
0.76 = 26.7 /MM/0.250
0.76 = 26.7 /0.250MM
0.76 * 0.250MM = 26.7
MM= 26.7/0.76 * 0.250
MM = 141 g/mol
Learn more about molar mass:brainly.com/question/12127540?
#SPJ12
Balanced equation is
HBr + NaOH ----> NaBr + H2O
Using molar masses
80.912 g HBr reacts with 39.997 g of Naoh to give 18.007 g water
so 1 gram of NaOH reacts with 2.023 g of HBR
and 5.7 reacts with 11.531 g HBr so we have excess HBr in this reaction
Mass of water produced = (5.7 * 18.007 / 39.997 = 2.6 g to 2 sig figs
Thus, sound will travel at a slower rate in the denser object. If sound waves of the same energy were passed through a block of wood and a block of steel, which is more dense than the wood, the molecules of the steel would vibrate at a slower rate. Thus, sound passes more quickly through the wood, which is less dense.