Answer:
A) The catalyzed reaction passes through C.
Explanation:
Crust, the upper layer of the Earth, is not always the same. Crust under the oceans is only about 5 km thick while continental crust can be up to 65 km thick. Also, ocean crust is made of denser minerals than continental crust.
The tectonic plates are made up of Earth’s crust and the upper part of the mantle layer underneath. Together the crust and upper mantle are called the lithosphere and they extend about 80 km deep. The lithosphere is broken into giant plates that fit around the globe like puzzle pieces. These puzzle pieces move a little bit each year as they slide on top of a somewhat fluid part of the mantle called the asthenosphere. All this moving rock can cause earthquakes.
The asthenosphere is ductile and can be pushed and deformed like silly putty in response to the warmth of the Earth. These rocks actually flow, moving in response to the stresses placed upon them by the churning motions of the deep interior of the Earth. The flowing asthenosphere carries the lithosphere of the Earth, including the continents, on its back.
Answer:
a): not necessarily due to London Dispersion Forces and dipole-dipole interactions.
b): not necessarily due to London Dispersion Forces.
Explanation:
There are three major types of intermolecular interaction:
- Hydrogen bonding between molecules with H-O, H-N, or H-F bonds and molecules with lone pairs.
- Dipole-dipole interactions between all molecules.
- London dispersion forces between all molecules.
The melting point of a substance is a result of all three forces, combined.
Note that the more electrons in each molecule, the stronger the London Dispersion Force. Generally, that means the more atoms in each molecule, the stronger the London dispersion force. The strength of London dispersion force between large molecules can be surprisingly strong.
For example,
(water) molecules are capable of hydrogen bonding. The melting point of
at
is around
. That's considerably high when compared to other three-atom molecules.
In comparison, the higher alkane hexadecane (
, straight-chain) isn't capable of hydrogen bonding. However, under a similar pressure, hexadecane melts at around
above the melting point of water. The reason is that with such a large number of atoms (and hence electrons) per molecule, the London dispersion force between hexadecane molecules could well be stronger than that the hydrogen bonding between water molecules.
Similarly, the dipole moments in HCl (due to the highly-polar H-Cl bonds) are much stronger than those in hexadecane (due to the C-H bonds.) However, the boiling point of hexadecane under standard conditions is much higher (at around
than that of HCl.