1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ira [324]
2 years ago
5

A plane stops from 250 mph in 25 seconds. Calculate the plane's acceleration.

Physics
1 answer:
Lelechka [254]2 years ago
6 0

Explanation:

Given:

v₀ = 250 mph

v = 0 mph

t = 25 s

Find: a

v = at + v₀

(0 mph) = a (25 s) + (250 mph)

a = -10 mph/s

You might be interested in
Which type of forces creates contact between surfaces?
Aneli [31]

Answer:

Frictional Force: Frictional force is the force caused by the relative motion of two surfaces that come into contact with each other.

4 0
2 years ago
Read 2 more answers
Two runners start at the same point on a straight track. The first runs with constant acceleration so that he covers 98 yards in
charle [14.2K]

Answer:

94.13 ft/s

Explanation:

<u>Given:</u>

  • t = time interval in which the rock hits the opponent = 10 s - 5 s = 5 s
  • s = distance to be moved by the rock long the horizontal = 98 yards
  • y = displacement to be moved by the rock during the time of flight along the vertical = 0 yard

<u>Assume:</u>

  • u = magnitude of initial velocity of the rock
  • \theta = angle of the initial velocity with the horizontal.

For the motion of the rock along the vertical during the time of flight, the rock has a constant acceleration in the vertically downward direction.

\therefore y = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow 0 = u\sin \theta 5 +\dfrac{1}{2}(-9.8)\times 5^2\\\Rightarrow u\sin \theta 5 =\dfrac{1}{2}(9.8)\times 5^2......(1)\\

Now the rock has zero acceleration along the horizontal. This means it has a constant velocity along the horizontal during the time of flight.

\therefore u\cos \theta t = s\\\Rightarrow u\cos \theta 5 = 98.....(2)\\

On dividing equation (1) by (2), we have

\tan \theta = \dfrac{25}{20}\\\Rightarrow \tan \theta = 1.25\\\Rightarrow \theta = \tan^{-1}1.25\\\Rightarrow \theta = 51.34^\circ

Now, putting this value in equation (2), we have

u\cos 51.34^\circ\times  5 = 98\\\Rightarrow u = \dfrac{98}{5\cos 51.34^\circ}\\\Rightarrow u =31.38\ yard/s\\\Rightarrow u =31.38\times 3\ ft/s\\\Rightarrow u =94.13\ ft/s

Hence, the initial velocity of the rock must a magnitude of 94.13 ft/s to hit the opponent exactly at 98 yards.

3 0
3 years ago
A 124-kg balloon carrying a 22-kg basket is descending with a constant downward velocity of 20.0 m/ s. A I.O-kg stone is thrown
nadya68 [22]

(a) 296.6 m

The motion of the stone is the motion of a projectile, thrown with a horizontal speed of

v_x = 15.0 m/s

and with an initial vertical velocity of

v_{y0} = -20.0 m/s

where we have put a negative sign to indicate that the direction is downward.

The vertical position of the stone at time t is given by

y(t) = h + v_{0y} t + \frac{1}{2}gt^2 (1)

where

h is the initial height

g = -9.81 m/s^2 is the acceleration due to gravity

The stone hits the ground after a time t = 6.00 s, so at this time the vertical position is zero:

y(6.00 s) = 0

Substituting into eq.(1), we can solve to find the initial height of the stone, h:

0 = h + v_{0y} y + \frac{1}{2}gt^2\\h = -v_{0y} y - \frac{1}{2}gt^2=-(-20.0 m/s)(6.00 s) - \frac{1}{2}(9.81 m/s^2)(6.00 s)^2=296.6 m

(b) 176.6 m

The balloon is moving downward with a constant vertical speed of

v_y = -20 m/s

So the vertical position of the balloon after a time t is

y(t) = h + v_y t

and substituting t = 6.0 s and h = 296.6 m, we find the height of the balloon when the rock hits the ground:

y(t) = 296.6 m + (-20.0 m)(6.00 s)=176.6 m

(c) 198.2 m

In order to find how far is the rock from the balloon when it hits the ground, we need to find the horizontal distance covered by the rock during the time of the fall.

The horizontal speed of the rock is

v_x = 15.0 m/s

So the horizontal distance travelled in t = 6.00 s is

d_x = v_x t = (15.0 m/s)(6.00 s)=90 m

Considering also that the vertical height of the balloon after t=6.00 s is

d_y = 176.6 m

The distance between the balloon and the rock can be found by using Pythagorean theorem:

d=\sqrt{(90 m)^2+(176.6 m)^2}=198.2 m

(di) 15.0 m/s, -58.8 m/s

For an observer at rest in the basket, the rock is moving horizontally with a velocity of

v_x = 15.0 m/s

Instead, the vertical velocity of the rock for an observer at rest in the basket is

v_y (t) = gt

Substituting time t=6.00 s, we find

v_y = (-9.8 m/s)(6.00 s)=-58.8 m/s

(dii) 15.0 m/s, -78.8 m/s

For an observer at rest on the ground, the rock is still moving horizontally with a velocity of

v_x = 15.0 m/s

Instead, the vertical velocity of the rock for an observer on the ground is now given by

v_y (t) = v_{0y} + gt

Substituting time t=6.00 s, we find

v_y = (-20.0 m/s)+(-9.8 m/s)(6.00 s)=-78.8 m/s

6 0
2 years ago
PLEASE HELP!!!<br>How are middle latitude cyclones and tropical cyclones different from each other?
defon
In contrast, extratropical cyclones have their strongest winds near the tropopause, which is about 8 miles above the surface. These differences are due to the tropical cyclone being “warm-core” in the troposphere, whereas extra-tropical cyclones are “warm-core” in the stratosphere and “cold-core” in the troposphere.
8 0
3 years ago
Sandy is whirling a ball attached to a string in a horizontal circle over his head. If Sandy doubles the speed of the ball, what
jeka57 [31]

The tension in the string B) It quadruples.

Explanation:

The ball is in uniform circular motion in a horizontal circle, so the tension in the string is providing the centripetal force that keeps the ball in circular motion. So we can write:

T= m\frac{v^2}{r}

where:

T is the tension in the string

m is the mass of the ball

v is the speed of the ball

r is the radius of the circle (the lenght of the string)

In this problem, we are told that the speed of the ball is doubled, so

v' = 2v

Substituting into the previous equation, we find the new tension in the string:

T' = m \frac{(2v)^2}{r}=4(m\frac{v^2}{r})=4T

Therefore, the tension in the string will quadruple.

Learn more about circular motion:

brainly.com/question/2562955

brainly.com/question/6372960

#LearnwithBrainly

6 0
3 years ago
Other questions:
  • A singly charged positive ion that has a mass of 6.07 ? 10-27 kg moves clockwise with a speed of 1.18 ? 104 m/s. the positively
    7·1 answer
  • If block D weighs 300 lb and block B weighs 275 lb determine the required weight of block C and the angle theta for equilibrium?
    10·1 answer
  • You have a circuit with a 50 Ω , a 100 Ω , and a 150 Ω - resistor connected in series. (a) Rank the current through them from hi
    13·1 answer
  • Alice and Tom dive from an overhang into the lake below. Tom simply drops straight down from the edge, but Alice takes a running
    14·1 answer
  • True or false? <br> objects that are sitting still have kinetic energy
    10·1 answer
  • In the lungs there are tiny sacs of air, which are called alveoli. an oxygen molecule is trapped within a sac, and the uncertain
    7·1 answer
  • How can the spectrum of a star be used to determine the composition of a star?
    6·1 answer
  • a car traveling at 40m/s starts to decelerate steadily. it comes to a complete stop in 12 seconds. what is the acceleration?
    11·1 answer
  • A runner exerts a force of 234 Newtons against the ground while using 1100 Watts of power. How long does it take them to run a d
    11·1 answer
  • Please help me and I’ll mark as brainliest i promise
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!