Answer:

Explanation:
Firstly, when you measure the voltage across the battery, you get the emf,
E = 13.0 V
In order to proceed we have to assume that the voltmeter offers no loading effect, which is a valid assumption since it has a very high resistance.
Secondly, the wires must be uniform. So the resistance per unit length is constant (say z). Now, even though the ammeter has very little resistance it cannot be ignored as it must be of comparable value/magnitude when compared to the wires. This is can seen in the two cases when currents were measured. Following Ohm's law and the resistance of a length of wire being proportional to it's length, we should have gotten half the current when measuring with the 40 m wire with respect to the 20 m wire (
). But this is not the case.
Let the resistance of the ammeter be r
Hence, using Ohm's law we get the following 2 equations:
.......(1)
......(2)
Substituting the value of r from (2) in (1), we have,

which simplifying gives us,
(which is our required solution)
putting the value of z in either (1) or (2) gives us, r = 0.5325 
Place the object in an electronic balance and measure its mass.
Place a measured amount of water in the cylinder.
Place the object in the cylinder so that it’s fully submerged.
Measure the new level of the liquid and subtract the original level. This is equal to the volume of the object.
Density = mass / volume.
Answer:
With the help of formula.
Explanation:
We can calculate the electric potential of any point through the formula of electric potential which is given below.
Electric potential = Coulomb constant x charge/ distance of separation.
Symbolically it can be written as, V = k q/ r where
V = electric potential
k = Coulomb constant
q = charge
r = distance of separation
If we have all these data, we can simply put the data in the formula and we will get the value of electric potential.
Answer:
The value is the temperature of the air inside the tire
340.54 K
% of the original mass of air in the tire should be released 99.706 %
Explanation:
Initial gauge pressure = 2.7 atm
Absolute pressure at inlet
= 2.7 + 1 = 3.7 atm
Absolute pressure at outlet
= 3.2 + 1 = 4.2 atm
Temperature at inlet
= 300 K
(a) Volume of the system is constant so pressure is directly proportional to the temperature.


340.54 K
This is the value is the temperature of the air inside the tire
(b). Since volume of the tyre is constant & pressure reaches the original value.
From ideal gas equation P V = m R T
Since P , V & R is constant. So
m T = constant




value of the original mass of air in the tire should be released is

⇒ -0.99706
% of the original mass of air in the tire should be released 99.706 %.