Answer: A plot of the natural log of the concentration of the reactant as a function of time is linear.
Explanation:
Since it was explicitly stated in the question that the half life is independent of the initial concentration of the reactant then the third option must necessarily be false. Also, the plot of the natural logarithm of the concentration of reactant against time for a first order reaction is linear. In a first order reaction, the half life is independent of the initial concentration of the reactant. Hence the answer.
Pure uranium is radioactive. It will react with most nonmetallic elements to make compounds. When it comes into contact with air, a thin, black layer of uranium oxide will form on its surface. Uranium-235 is the only naturally occurring isotope that is fissile.
plz mark brainiest
Answer:
The answer to your question is 242 ml
Explanation:
Data
HI 0.211 M Volume = x
KMnO₄ 0.354 M Volume = 24 ml
Balanced Chemical reaction
12HI + 2KMnO₄ + 2H₂SO₄ → 6I₂ + Mn₂SO₄ + K₂SO₄ + 8H₂O
Process
1.- Calculate the moles of KMnO₄ 0.354 M in 24 ml
Molarity = moles / volume (L)
moles = Molarity x volume (L)
moles = 0.354 x 0.024
moles = 0.0085
2.- From the balanced chemical reaction we know that HI and KMnO₄ react in the proportion 12 to 2. Then,
12 moles of HI --------------- 2 moles of KMnO₄
x --------------- 0.0085 moles of KMnO₄
x = (0.0085 x 12)/2
x = 0.051 moles of HI
3.- Calculate the milliliters of HI 0.211 M
Molarity = moles/volume
Volume = moles/molarity
Volume = 0.051/0.211
Volume = 0.242 L or Volume = 242 ml
Answer: Option (c) is the correct answer.
Explanation:
A hydrogen bond is defined as a weak bond that is formed between an electropositive atom (generally hydrogen atom) and an electronegative atom like oxygen, nitrogen and fluorine.
An ionic bond is defined as a bond formed between a metal and a non-metal and in this bond transfer of electron takes place from metal to non-metal. And, due to the presence of opposite charges on the combining atoms there exists a strong force of attraction.
Vander waal forces are defined as the weak electric forces which tend to attract neutral molecules towards each other in gases, liquefied and solidified gases.
Vander waal forces are very weak forces.
Thus, we can conclude that Van der walas interactions are weak interactions would require the least amount of energy to disrupt.
Answer:
A.) 1
Explanation:
Propane only exists in one conformation. It does not have enough carbons to form branches, and there are only hydrogens attached to each carbon. Furthermore, there is no way to twist the carbon or change its orientation (ex. cis- and trans-) to result in a different structure of propane. There is no other way to represent the molecule without drawing a different molecule.