Answer:
Large molecules tend to have greater boiling points because the London dispersion forces are stronger within.
Explanation:
Electrolysis of water<span> is the </span><span>decomposition reaction, because from one molecule (water) two molecules (hydrogen and oxygen) are produced. Water is separeted into two molecules:
</span>Reaction of reduction at cathode: 2H⁺(aq) + 2e⁻<span> → H</span>₂(g<span>).
</span><span><span>Reaction of oxidation at anode: 2H</span></span>₂<span><span>O(l) → O</span></span>₂<span><span>(g) + 4H</span></span>⁺(<span><span>aq) + 4e</span></span>⁻.<span><span>
</span></span>
Answer:
True
Explanation:
If you look closley at the nucleus, you don't count the neutrons just the prtons which then effect the electrons.
Good luck :)
Hello!
Explanation:
↓↓↓↓↓↓↓
Density is the amount of mass in a given volume. It's a derived unit of measure. It is equal to mass divided by volume. It's measured in units such as grams per cubic centimeter and grams per milliliter. Density is the ratio of mass to volume. Density is a physical property of an object. It is degree of compactness of a substances. Relative density is used to separate solids, liquids, and gases. The gas in the container rises to the top because it has the least density. The liquids separate into individual layers based on their relative densities. The least dense liquid is on top. The most dense liquid is on bottom. The solids sink to the bottom of the container because they have the greatest density.
Hope this helps!
Thank you for posting your question at here on Brainly.
-Charlie
Answer:
0.13 g
Explanation:
mass of aluminum required = ( Dislocation length) / ( Dislocation density) × (density of metal)
3000 miles to cm ( 1 mile = 160934 cm) = 3000 miles × 160934 cm / 1 mile = 482802000 cm
density of Aluminium = 2.7 g /cm³
dislocation density of aluminum = 10¹⁰ cm³
mass of aluminum required = (482802000 cm × 2.7 g/cm³) / 10¹⁰ cm³ = 0.13 g