Answer:
ΔT = 0.78 °C
Explanation:
Given data:
Mass of Al = 9.5 g
Specific heat capacity of Al = 0.9 J/g.°C
Temperature change = ?
Heat added = 67 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
67 J = 9.5 g × 0.9 j/g.°C × ΔT
67 J = 85.5 j/°C × ΔT
ΔT = 67 J / 85.5 j/°C
ΔT = 0.78 °C
Answer:
A
Explanation:
I would say A because the sun makes energy right so if you are looking for an arrow or arrows I would say A I hope this helps!! and have a great day or night
The answer for the following question is option "C".
Option C is not included in the John Dalton's modern theory of an atom.
- "It states atoms of different elements combine to form new compound" but not new elements
Explanation:
According to John's Dalton's modern theory of an atom:
1. All matter is composed of atoms.
2. Atoms cannot be created,destroyed or subdivided in the ordinary chemical reactions.
3. Atoms of one element differ in the properties from atoms of an another element.
(i.e.)Each and every atom of the element has its own unique properties of their own.
4. Atoms of one element combine with the atoms of another element to <u>form new compound.</u>
5. Atoms that make up an element are identical to each other.
Given that the pressure, temperature and area of effusion is constant, the rate of effusion is inversely proportional to the square root of the molecular mass of the gas.
Mr Oxygen = 32
Mr Argon = 40
Effusion Oxygen = 1/√32
Effusion Argon = 1/√40
Effusion Oxygen / Effusion Argon = √(40) / √(32)
=√(40/32) = √(5/4) = 1.19
Thus, Oxygen will effuse 1.19 times faster than Argon. The second option is correct.