Answer:
40.7062 °C
Explanation:
Let the initial temperature = x °C
Boiling temperature of water = 100 °C
Using,
Q = m C ×ΔT
Where,
Q is the heat absorbed in the temperature change from x °C to 100 °C.
C gas is the specific heat of the water = 4.184 J/g °C
m is the mass of water
ΔT = (100 - x) °C
Given,
Mass = 2350 g
Q = 5.83 × 10⁵ J
Applying the values as:
Q = m C ×ΔT
5.83 × 10⁵ = 2350 × 4.184 × (100 - x)
<u>x, Initial temperature = 40.7062 °C </u>
The hydrogen ion concentration is calculated as follows
Ph + POh =14
ph= 14-9.85= 4.15
anti -H+
=anti (-4.15) = 7.07 x10^-5 moles per liter
Answer:
Whales facilitate carbon absorption in two ways. On the one hand, their movements — especially when diving — tend to push nutrients from the bottom of the ocean to the surface, where they feed the phytoplankton and other marine flora that suck in carbon, as well as fish and other smaller animals.
Answer:
m = 1.5 gram
Explanation:
Given that,
Density of protein gelatin, d = 3 g/L
The volume of protein gelatin, V = 0.5 L
We need to find the mass of the protein gelatin. The density of an object is given by :
d = m/V
Where
m is mass

So, the required mass is 1.5 gram.
Answer:
The expression to calculate the mass of the reactant is 
Explanation:
<em>The amount of heat released is equal to the amount of heat released per gram of reactant times the mass of the reactant.</em> To keep to coherence between units we need to transform 1,080 J to kJ. We do so with proportions:

Then,
