The statement that best describes a solution is the option C: a mixture having a uniform composition where the components cannot be seen separately and all components are in the same state.<span> That is exactly what a solution is: a homogeneous mixture, the composition is uniform, but it can vary from one solution to other. The components must be in the safe phase, but it can be any phase: solid, liquid or gas. The most classical and clear example is the salt solution, NaCl. When you dissolve a spoon of NaCl in water you will not be able to distinguish nor separating the solute from the solvent, and the mixture will have uniform composition.</span>
Answer: Be= 2, C =4, Li = 1 and B=3
Explanation:
The valence shell can be define as the outermost shell of an atom that contains the valence electrons.
Beryllium (Be), electronic configuration; 1s2 2s2, = 2 electrons in its valence shell.
Carbon (C), electronic configuration; 1s2 2s2 2p2, = 4 electrons in its valence shell.
Lithium (Li), electronic configuration; 1s2 2s1 = 1 electron in its valence shell.
Boron (B) , electronic configuration; 1s2 2s2 2p1 = 3 electron in its valence shell.
the molar mass of the element is 81.36 g/mol
<u><em>calculation</em></u>
step 1 : multiply each %abundance of the isotope by its mass number
that is 79.95 x 29.9 =2391
81.95 x 70.1 = 5745
Step 2: add them together
2390.5 + 5744.7 =8136
Step 3: divide by 100
= 8136/100 = 81.36 g/mol
Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84

and replacing in the expression Q = m*L you get:
Q=172 g*84 
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
26.7% is the percent composition by mass of sulfur in a compound named magnesium sulfate. Explanation: Molar mass of compound = 120 g/mol.