Answer:
Let O be the center of a circle whose radius is r cm , in which AB= 14 cm long
cord is at a distanceof 24 cm from O. Draw a perpendicular OD on AB , thus ,
OD= 24 cm.
In right angled triangle. ODB
OB^2 = OD^2+ DB^2
r^2 =(24)^2+(AB/2)^2 = 576+(14/2)^2
r^2 = 576+ 49=625
r = √625. =25 cm. Answer.
Answer:
primero debemos resolver la ecuacion sumamos 3d mas 10d luego pasamos el mumero 8 al otro lado entonces se convertira en negativo 8 el resulatdo de esta ecuacion sera 13d elevado al cubo =-8
13d^{3}=-8 entonces
entonces remplazamos en la formula cuadratica 3d=a 0=b -8=c y lo rremplazas en la formula cuadratica
Step-by-step explanation:
First we must solve the equation we add 3d plus 10d then we pass the number 8 to the other side then it will become negative 8 the result of this equation will be 13d cubed = -8
13d 3 = - 8 then
then we replace in the quadratic formula 3d = a 0 = b -8 = c and you replace it in the quadratic formula
Answer: x= log18 (10) +1/2
x= 1.29664
Good luck !
When a wire is bent to form a circle then its length represents the circumference of the circle formed. Therefore in our case the circumference of the circle is 50 cm. we can use this to determine the radius of the circle and then determine the area. Circumference of a circle is given by \pi × diameter, (\pi = 3.142)
thus diameter will be given by 50 cm ÷ 3.142 = 15.9134 cm
the radius will be 15.9134 ÷2 = 7.9567 cm or ≈ 7.96 cm
The area of a circle is given by \pi × square of radius
Area = 3.142 × 7.96×7.96 = 199.0821 square cm
Thus the area of the circle formed is ≈ 199.08 square cm ( 2 decimal places)
Answer:
C
Step-by-step explanation: