Answer:8.75 s,
136.89 m
Explanation:
Given
Initial velocity
velocity after 5 s is 
Therefore acceleration during these 5 s


therefore time required to stop
v=u+at
here v=final velocity =0 m/s
initial velocity =31.29 m/s


(b)total distance traveled before stoppage


s=136.89 m
Answer:
Claim: The heart pumps more blood throughout the body when one exercises because exercise takes a lot of energy from the body.
Evidence: Heart rate went from 80 bpm to 120 bpm
Reasoning: Doing exercise takes a lot of energy to do, causing the circulatory system to have to work harder and pump more blood throughout the body in order to allow someone to be able to do a task that involves so much movement and energy.
Explanation:
Answer: They behave the same because, according to the principle of equivalence, the laws of physics work the same in all frames of reference.
Explanation:
According to the equivalence principle postulated by Einstein's Theory of General Relativity, acceleration in space and gravity on Earth have the same effects on objects.
To understand it better, regarding to the equivalence principle, Einstein formulated the following:
A gravitational force and an acceleration in the opposite direction are equivalent, both have indistinguishable effects. Because the laws of physics must be accomplished in all frames of reference.
Hence, according to general relativity, gravitational force and acceleration in the opposite direction (an object in free fall, for example) have the same effect. This makes sense if we deal with gravity not as a mysterious atractive force but as a geometric effect of matter on spacetime that causes its deformation.
The new period is D) √2 T

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy and Period of Simple Pendulum formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>


where:
<em>T = period of simple pendulum ( s )</em>
<em>L = length of pendulum ( m )</em>
<em>g = gravitational acceleration ( m/s² )</em>
Let us now tackle the problem!

<u>Given:</u>
initial length of pendulum = L₁ = L
initial mass = M₁ = M
final length of pendulum = L₂ = 2L
final mass = M₂ = 2M
initial period = T₁ = T
<u>Asked:</u>
final period = T₂ = ?
<u>Solution:</u>






<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
An Earth revolution is a trip around the sun in a closed path (relative to the sun).
The path is very nearly an ellipse with the sun at one focus, and a little less nearly a circle with the sun at the center.
One complete revolution takes roughly 365.24 days, and at that point, the Earth immediately begins another one.
We have a special word that we use to refer to that special period of time. In English, it's called a "year".