Answer: The question has some details missing. here is the complete question ; Point charge 1.5 μC is located at x = 0, y = 0.30 m, point charge -1.5 μC is located at x = 0 y = -0.30m. What are (a)the magnitude and (b)direction of the total electric force that these charges exert on a third point charge Q = 5.0 μC at x = 0.40 m, y = 0
Explanation:
- a) First of all find the distance between the two charges;
- x = 0, y = 0.30 and x = 0.40 m, y = 0
hence, the force F = 2Kq1q2cosθ /r²...............equation 1
but cosθ = y/r = 0.3/0.5
cosθ = 0.6
plugging back to equation 1;
F = 2 x 9 x 10^9 x 1.5 x 10^-6 x 5 x 10^-6 /0.5^2
F = 540 x 10^-3
Magnitude of Force = 0.54N
b) Direction is at angle 90
Answer:
An investigation is made to determine the performance of simple thin airfoils in the slightly supersonic flow region with the aid of the nonlinear transonic theory first developed by von Kármán[1]. Expressions for the pressure coefficient across an oblique shock and a Prandtl-Meyer expansion are developed in terms of a transonic similarity parameter. Aerodynamic coefficients are calculated in similarity form for the flat plate and asymmetric wedge airfoils, and curves are plotted. Sample curves for a flat plate and a specific asymmetric wedge are plotted on the usual coordinate grid of Cl, Cd,andCmc/4versus angle of attack and Cl versus Mach Number to illustrate the apparent features of nonlinear flow.
Explanation:
You haven't said how much power the stereo uses. It matters !
Whatever that number is, the maximum hours per month is
(3460) divided by (the # of watts the stereo uses when it's playing) .
Answer:
9) This is a case of deceleration
10)-0.8 ms-2
b) acceleration is the change in velocity with time
11)
a) 100 ms-1
b) 100 seconds
12) 10ms-1
13) more information is needed to answer the question
14) - 0.4 ms^-2
15) 0.8 ms^-2
Explanation:
The deceleration is;
v-u/t
v= final velocity
u= initial velocity
t= time taken
20-60/50 =- 40/50= -0.8 ms-2
11)
Since it starts from rest, u=0 hence
v= u + at
v= 10 ×10
v= 100 ms-1
b)
v= u + at but u=0
1000 = 10 t
t= 1000/10
t= 100 seconds
12) since the sprinter must have started from rest, u= 0
v= u + at
v= 5 × 2
v= 10ms-1
14)
v- u/t
10 - 20/ 25
10/25
=- 0.4 ms^-2
15)
a=v-u/t
From rest, u=0
8 - 0/10
a= 8/10
a= 0.8 ms^-2