Answer:
6.4 L
Explanation:
When all other variables are held constant, you can use Boyle's Law to find the missing volume:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the theoretical volume by plugging the given values into the equation and simplifying.
P₁ = 3.2 atm P₂ = 1.0 atm
V₁ = 2.0 L V₂ = ? L
P₁V₁ = P₂V₂ <----- Boyle's Law
(3.2 atm)(2.0 L) = (1.0 atm)V₂ <----- Insert values
6.4 = (1.0 atm)V₂ <----- Simplify left side
6.4 = V₂ <----- Divide both sides by 1.0
The heat released by the water when it cools down by a temperature difference AT
is Q = mC,AT
where
m=432 g is the mass of the water
C, = 4.18J/gºC
is the specific heat capacity of water
AT = 71°C -18°C = 530
is the decrease of temperature of the water
Plugging the numbers into the equation, we find
Q = (4329)(4.18J/9°C)(53°C) = 9.57. 104J
and this is the amount of heat released by the water.
Answer:
we will except an increase in the polarity of the system and this will cause the Non-polar spot to be near the solvent front, while the polar spot will run at an approximate speed of 0.5 Rf
Explanation:
when we run a TLC plate in a 50/50 mixture of hexanes and ethyl acetate we will except an increase in the polarity of the system and this will cause the Non-polar spot to be near the solvent front, while the polar spot will run at an approximate speed of 0.5 Rf
The speed of the polar spot depends largely on the level of polarity, an increase in the polarity will see both spots of Neat hexane run when we run a TLC plate in a 50/50 mixture of hexanes and ethyl acetate
It deteriorates. Definitely more than when you started.
Answer:
Option 1, Cl is reduced and gains electrons
Explanation:
HClO₃ → HClO₂
In HClO₃, chlorine acts with +5 in the oxidation state
In HClO₂,, chlorine acts with +3 in the oxidation state.
The state has been reducted, so the Cl has been reduced. As it was reduced, it means that has won e⁻, in this case 2
Cl⁻⁵ → Cl⁻³ + 2e⁻