Answer:
The transmitted intensity through all polarizers is 
Explanation:
According to Malu's law the intensity of a polarized light having an initial intensity
is mathematically represented as

Now considering the polarizer(The polarizing disk) the equation above becomes

Where n is the number of polarizers
Substituting
for the initial intensity 3 for the n and 20° for the angle of rotation


(a) 328.6 kg m/s
The linear impulse experienced by the passenger in the car is equal to the change in momentum of the passenger:

where
m = 62.0 kg is the mass of the passenger
is the change in velocity of the car (and the passenger), which is

So, the linear impulse experienced by the passenger is

(b) 404.7 N
The linear impulse experienced by the passenger is also equal to the product between the average force and the time interval:

where in this case
is the linear impulse
is the time during which the force is applied
Solving the equation for F, we find the magnitude of the average force experienced by the passenger:

Answer:
Cp = 4756 [J/kg*°C]
Explanation:
In order to calculate the specific heat of water, we must use the equation of energy for heat or heat transfer equation.
Q = m*Cp*(T_f - T_i)/t
where:
Q = heat transfer = 2.6 [kW] = 2600[W]
m = mass of the water = 0.8 [kg]
Cp = specific heat of water [J/kg*°C]
T_f = final temperature of the water = 100 [°C]
T_i = initial temperature of the water = 18 [°C]
t = time = 120 [s]
Now clearing the Cp, we have:
Cp = Q*t/(m*(T_f - T_i))
Now replacing
Cp = (2600*120)/(0.8*(100-18))
Cp = 4756 [J/kg*°C]
4
Just divide 12 by 3, so if it takes 3 seconds, then every second, it goes up 4.
Acceleration = (change in speed) / (time for the change)
-- You said that the airplane has to speed up from zero ("sitting") to 40 m/s, so the change in speed is 40 m/s.
-- You said that it has to roll for 10 seconds to build up enough speed to take off, so the time for the change is 10 s .
Acceleration = (40 m/s) / (10 s)
Acceleration = (40/10) (m/s)/s
<em>Acceleration = 4 m/s²</em>
That seems like no problem. It's only like about 41% of 1 G . That would not even spill the drinks in First Class, or wake up the passengers who are already asleep (like me).