Answer:
0.07172 L = 7.172 mL.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.
</em>
where, P is the pressure of the gas in atm (P = 1.0 atm, Standard P).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = 3.2 x 10⁻³ mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 273 K, Standard T).
<em>∴ V = nRT/P =</em> (3.2 x 10⁻³ mol)(0.0821 L.atm/mol.K)(273 K)/(1.0 atm) = <em>0.07172 L = 7.172 mL.</em>
The question is incomplete, here is the complete question:
At elevated temperature, nitrogen dioxide decomposes to nitrogen oxide and oxygen gas

The reaction is second order for
with a rate constant of
at 300°C. If the initial [NO₂] is 0.260 M, it will take ________ s for the concentration to drop to 0.150 M
a) 1.01 b) 5.19 c) 0.299 d) 0.0880 e) 3.34
<u>Answer:</u> The time taken is 5.19 seconds
<u>Explanation:</u>
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = ?
[A] = concentration of substance after time 't' = 0.150 M
= Initial concentration = 0.260 M
Putting values in above equation, we get:

Hence, the time taken is 5.19 seconds
The volume of the water in cubic meter is determined as 3.2 x 10⁶ m³ .
<h3>Weight of one gallon of water</h3>
The weight of 1 gal of water is given as 3785 g
Mass of 8.48 x 10⁸ gal = 3785 x 8.48 x 10⁸ = 3.2 x 10¹² g
<h3>Volume of the water in cubic meters</h3>
Volume = mass/density
Volume = 3.2 x 10¹² g/1 gmL
Volume = 3.2 x 10¹² mL x 10⁻⁶ m³/mL = 3.2 x 10⁶ m³
Thus, the volume of the water in cubic meter is determined as 3.2 x 10⁶ m³ .
Learn more about volume here: brainly.com/question/1972490
#SPJ1
Answer:
Approximately 56.8 liters.
Assumption: this gas is an ideal gas, and this change in temperature is an isobaric process.
Explanation:
Assume that the gas here acts like an ideal gas. Assume that this process is isobaric (in other words, pressure on the gas stays the same.) By Charles's Law, the volume of an ideal gas is proportional to its absolute temperature when its pressure is constant. In other words
,
where
is the final volume,
is the initial volume,
is the final temperature in degrees Kelvins.
is the initial temperature in degrees Kelvins.
Convert the temperatures to degrees Kelvins:
.
.
Apply Charles's Law to find the new volume of this gas:
.
Answer:
CO(g) + H2(g) + H2O(g) ==> CO2(g) + 2H2(g)
Explanation:
In the industry, hydrogen is prepared from water and hydrocarbons. Water gas being the major method of preparation of hydrogen industrially.
The water-gas reaction is an industrial process in which steam is passed over red-hot coke giving a gaseous mixture of carbon monoxide and hydrogen:
C + H2O(g) → CO + H2.
The mixture of CO and H2 is Futher passed through steam according to the equation:
CO(g) + H2(g) + H2O(g) ==> CO2(g) + 2H2(g) to give hydrogen and carbon dioxide.