Answer:
When chlorine (as a gas or dissolved in water) is added to sodium bromide solution, the chlorine takes the place of the bromine. Because chlorine is more reactive than bromine, it displaces bromine from sodium bromide. The solution turns brown. ... The chlorine has gone to form sodium chloride.
Answer:
Heeeeeeeeeeeeeloooooooooo
Explanation:
Answer: The pH at the equivalence point for the titration will be 0.65.
Solution:
Let the concentration of
be x
Initial concentration of
, c = 0.230 M

at eq'm c-x x x
Expression of
:
![K_b=\frac{[CH_3NH_3^+][+OH^-]}{[CH_3NH_2]}=\frac{x\times x}{c-x}=\frac{x^2}{c-x}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5B%2BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D%3D%5Cfrac%7Bx%5Ctimes%20x%7D%7Bc-x%7D%3D%5Cfrac%7Bx%5E2%7D%7Bc-x%7D)
Since ,methyl-amine is a weak base,c>>x so
.

Solving for x, we get:

Given, HCl with 0.230 M , it dissociates fully in water which means
= 0.230 M
will result in neutral solution, since ![[OH^-]](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3C%5BH%5E%2B%5D)
Remaining
after neutralizing
ions
![[H^+]_{\text{left in solution}}=[H^+]-[OH^-]=0.230-1.07\times 10^{-2}=0.2193 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D_%7B%5Ctext%7Bleft%20in%20solution%7D%7D%3D%5BH%5E%2B%5D-%5BOH%5E-%5D%3D0.230-1.07%5Ctimes%2010%5E%7B-2%7D%3D0.2193%20M)
![pH=-log{[H^+]_{\text{left in solution}}=-log(0.2193)=0.65](https://tex.z-dn.net/?f=pH%3D-log%7B%5BH%5E%2B%5D_%7B%5Ctext%7Bleft%20in%20solution%7D%7D%3D-log%280.2193%29%3D0.65)
The pH at the equivalence point for the titration will be 0.65.
Answer: so B
Explanation:
Generally, a gas behaves more like an ideal gas at higher temperature and lower pressure, as the potential energy due to intermolecular forces becomes less significant compared with the particles' kinetic energy, and the size of the molecules becomes less significant compared to the empty space between them.