It will have 35 ''electrons'' . Basically the number of protons in the nucleus of an atom is always equal to the number of electrons but its just that protons are positively charged and electrons are negatively charged. <span />
C5H12 (l) + 8O2 (g) ----> 5CO2 (g) + 6H2O (l)
Delta H = -3505.8 kJ/mol
C (s) + O2 (g) -----> CO2 (g)
Delta H = -393.5 kJ/mol
H2 (g) + (1/2)O2 (g) ------> H2O (l)
Delta H = -286 kJ/mol
Possible answers:
a. +35 kJ/mol
b. + 1,073 kJ/mol
c. -4,185 kJ/mol
d. -2,826 kJ/mol
e. -178 kJ/mol
Answer:
Moment=Force x Pivot
Explanation:
A moment is the turning effect of a force. Moments act about a point in a clockwise or anticlockwise direction.
Law of moments:
When an object is balanced (in equilibrium) the sum of the clockwise moments is equal to the sum of the anticlockwise moments.
How to calculate moments:
Moment=Force x Pivot
Answer:
melting, freezing, sublimation, deposition, condensation, and vaporization. These changes
Explanation:
hope it helps...i dont know if its right but i hope it helps
Answer:
28.93 g/mol
Explanation:
This is an extension of Graham's Law of Effusion where 
We're only talking about molar mass and time (t) here so we'll just concentrate on
. Notice how the molar mass and time are on the same position, recall effusion is when gas escapes from a container through a small hole. The time it takes it to leave depends on the molar mass. If the gas is heavy, like Xe, it would take a longer time (4.83 minutes). If it was light it would leave in less time, that gives us somewhat an idea what our element could be, we know that it's atleast an element before Xenon.
Let's plug everything in and solve for M2. I chose M2 to be the unknown here because it's easier to have it basically as a whole number already.

The square root is easier to deal with if you take it out in the first step, so let's remove it by squaring each side by 2, the opposite of square root essentially.



M2= 0.22 x 131
M2= 28.93 g/mol