The answer true I’m guessing. It’s a 50/50 chance
Answer:
R = 1.2295 10⁵ m
Explanation:
After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body
θ = 1.22 λ / D
where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture
how angles are measured in radians
θ = y / R
where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens
R =
let's calculate
R =
R = 1.2295 10⁵ m
The force of gravity between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation
In this problem, the mass of the object is

, while the Earth's mass is

. Their separation is

, therefore the gravitational force exerted on the object is
Answer:
velocity = 1527.52 ft/s
Acceleration = 80.13 ft/s²
Explanation:
We are given;
Radius of rotation; r = 32,700 ft
Radial acceleration; a_r = r¨ = 85 ft/s²
Angular velocity; ω = θ˙˙ = 0.019 rad/s
Also, angle θ reaches 66°
So, velocity of the rocket for the given position will be;
v = rθ˙˙/cos θ
so, v = 32700 × 0.019/ cos 66
v = 1527.52 ft/s
Acceleration is given by the formula ;
a = a_r/sinθ
For the given position,
a_r = r¨ - r(θ˙˙)²
Thus,
a = (r¨ - r(θ˙˙)²)/sinθ
Plugging in the relevant values, we obtain;
a = (85 - 32700(0.019)²)/sin66
a = (85 - 11.8047)/0.9135
a = 80.13 ft/s²
Hello!

Use the equation F = m · a (Newton's Second Law) to solve. Substitute in the given values:
F = 5 · 20
F = 100N