Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
mass = 0.508 g, Volume = 0.175 L
Temperature = (25 + 273) K = 298 K, P = 1 atm
As per the ideal gas law, PV = nRT.
where, n = no. of moles = 
Hence, putting all the given values into the ideal gas equation as follows.
PV =
1 atm \times 0.175 L =
= 71.02 g
As the molar mass of a chlorine atom is 35.4 g/mol and it exists as a gas. So, molar mass of
is 70.8 g/mol or 71 g/mol (approx).
Thus, we can conclude that the gas is most likely chlorine.
Noble gases
also known as Inert gases
Hey there!:
V1 = 3.05 L
V2 = 3.00 L
P1 = 724 mmHg
P2 = to be calculated
T1 = 298 K
T2 = 273 K
Therefore:
P1*V1 / T1 = P2*V2 / T2
P2 = ( P1*V1 / T1 ) * T2 / V2
P2 = 724 * 3.05 * 273 / 298 * 3.00
P2 = 602838.6 / 894
P2 = 674.31 mmHg
1 atm ----------- 760 mmHg
atm ------------- 674.31 mHg
= 674.31 * 1 / 760
= 0.887 atm
Hope this helps!
Answer: 16700 Joules
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed = ?
m = mass of sand = 2 kg
c = heat capacity = 
Initial temperature =
= 
Final temperature=
= 
Change in temperature ,
Putting in the values, we get:


16700 J of energy must be added to a 2-kilogram pile of it to increase its temperature from 40°C to 50°C