Answer:
Specific heat of metal = 0.26 j/g.°C
Explanation:
Given data:
Mass of sample = 80.0 g
Initial temperature = 55.5 °C
Final temperature = 81.75 °C
Amount of heat absorbed = 540 j
Specific heat of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 81.75 °C - 55.5 °C
ΔT = 26.25 °C
540 j = 80 g × c × 26.25 °C
540 j = 2100 g.°C× c
540 j / 2100 g.°C = c
c = 0.26 j/g.°C
Answer:
petroleum,natural gas,lime stone, coal,water,acetylene etc.
Answer:
According to Le Chatelier’s Principle, a stress placed on a system at equilibrium will cause the equilibrium to shift to counteract the stress. For example, a temperature increase in the above reaction will favor the reverse reaction to use the excess heat and form brown NO2 gas. A temperature decrease in the above reaction favors the forward reaction to produce heat and form colorless N2O4 gas.