Answer:
1. the group number of sodium is 1 and it is a metal
2. the group number of helium is 18 and it is a nonmetal
3. the group number of iodine is 17 and it is a nonmetal
4.the group number of calcium is 2 and it is a metal
5. lithium has similar properties to potassium
6. calcium has similar properties to magnesium
7. neon has similar properties to xenon
8. Iodine has similar properties to chlorine
One single covalent bond, hope this helps!
Answer:
1.1 × 10² g
Explanation:
First, we will convert 1.0 L to cubic centimeters.
1.0 L × (10³ mL/1 L) × (1 cm³/ 1 mL) = 1.0 × 10³ cm³
The density of water is 1.0 g/cm³. The mass corresponding to 1.0 × 10³ cm³ is:
1.0 × 10³ cm³ × (1.0 g/cm³) = 1.0 × 10³ g
1 mole of water (H₂O) has a mass of 18 g, consisting of 2 g of H and 16 g of O. The mass of Hydrogen in 1.0 × 10³ g of water is:
1.0 × 10³ g H₂O × (2 g H/18 g H₂O) = 1.1 × 10² g
Answer : The correct answer is, (c) the number of neutrons
Explanation :
Isotope : It is defined as the element that have the same number of protons but have the different number of neutrons of each of the atom.
Atomic number is defined as the number of protons or number of electrons.
Atomic number = number of protons = number of electrons
Mass number is defined as the sum of number of protons and number of neutrons.
Number of neutrons = Mass number - Atomic number
For example : For Carbon - 13 isotope.
Mass number = 13
Atomic number = 6
Number of neutrons = Mass number - Atomic number
Number of neutrons = 13 - 6 = 7
Hence, the difference between the mass number of an isotope and its atomic number is the number of neutrons.
The effusion rate is 1.125 cm/sec for ammonia.
How to find effusion rate ?
Effusion rate (r1) HCl = 43.2 cm/min
Molar mass (m2) NH3 =17.04g/mole
Molar mass (m1) HCl =36.46g/mole
- Substitute the molar masses of the gases into Graham's law and solve for the ratio.
firstly convert 43.2 cm/min into cm/sec i.e., 0.72 cm/sec
Then,
0.72/r2 =√17.04/36.46
r2= 1.125 cm/sec
Hence, the rate of diffusion of ammonia is 1.125 times faster than the rate of diffusion of hydrogen chloride.
learn more about effusion here:
brainly.com/question/2097955
#SPJ4