Answer:
The log will float on the water because its density is lower than the liquid, so it will stay at the top due to Archimedes' principle.
Answer:
In aqueous solution the pH scale varies from 0 to 14, which indicates this concentration of hydrogen. Solutions with pH less than 7 are acidic (the value of the exponent of the concentration is higher, because there are more ions in the solution) and alkaline (basic) those with a pH higher than 7. If the solvent is pure water, the pH = 7 indicates neutrality of the solution
Explanation:
PH is a measure of how acidic or basic a liquid is. Specifically, from a dissolution. The acidity of a solution is essentially due to the concentration of hydrogen ions dissolved in it. In reality, the ions are not found alone, but are in the form of hydronium ions consisting of one oxygen molecule and three positively charged hydrogen. PH precisely measures this concentration. And to do it, we can use simple and very visual methods.
Answer:
I can use a dichotomous key. It helps me classify objects by sorting it out with "yes" and "no" questions.
or
I can use a Punnett Square. It helps me classify what genes the offspring will receive simply by figuring out the recessive and dominant genes as well as the hetzygous and homzygous.
Now give an example of which ever chart you choose by drawing it if that is required. For the Punnett Square label each of the squares Top right Hetzygous, top left dominant, bottom left recessive, bot-tom right homzygous. And for the dichotomous key put a 5-7 length branch showing the animals that have fur, can breathe under water, what cannot or doesn't have those traits. or something similar
Hopefully this helps :)
Answer:
Tetrahedral, trigonal pyramidal, trigonal bipyramidal.
Explanation:
The VSPER theory states that the bonds of sharing electrons and the lone pairs of electrons will repulse as much as possible. So, by the repulsion, the molecule will have some shape.
In the ion PO₄³⁻, the central atom P has 5 electrons in its valence shell, so it needs 3 electrons to be stable. Oxygen has 6 electrons at the valence shell and needs 2 to be stable. 3 oxygens share 1 pair of electrons with P, and the two lone pair remaining in P is shared with the other O, then the central atom makes 4 bonds and has no lone pairs, the shape is tetrahedral.
In the ion H₃O⁺, the central atom O has 6 electrons in its valence shell and needs 2 electrons to be stable. The hydrogen has 1 electron, and need 1 more to be stable. The hydrogens share 1 pair of electrons with the oxygen, then it remains 3 electrons at the central atom, and the VSPER theory states that the shape will be a trigonal pyramidal.
In the AsF₅, the central atom As has 5 valence electrons, and F has 1 electron in its valence shell, so each F shares one pair of electrons with As, and there are no lone pairs in the central atom. For 5 bonds without lone pairs, the shape is trigonal bipyramidal.