Answer: The coefficient in front of AgCl when the equation is properly balanced is 2.
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.
Decomposition of silver chloride is represented as:

Thus the coefficient in front of AgCl when the equation is properly balanced is 2.
last one? don't take my word though
Explanation:
the suns heat is related to nuclear fusion
Answer:
6626 g
Explanation:
Given that:
Density of water = 1.00 g/ml, volume of water = 42800 ml.
Since density = mass/ volume
mass of water = volume of water * density of water = 42800 ml * 1 g/ml = 42800 g
Initial temperature of water = 22°C and final temperature of water = 45°C.
specific heat capacity for water = 4.184 J/g°C
ΔT water = 45 - 22 = 23°C
For iron:
mass = m,
specific heat capacity for iron = 0.444 J/g°C
Initial temperature of iron = 1445°C and final temperature of water = 45°C.
ΔT iron = 45 - 1445 = -1400°C
Quantity of heat (Q) to raised the temperature of a body is given as:
Q = mCΔT
The quantity of heat required to raise the temperature of water is equal to the temperature loss by the iron.
Q water (gain) + Q iron (loss) = 0
Q water = - Q iron
42800 g × 4.184 J/g°C × 23°C = -m × 0.444 J/g°C × -1400°C
m = 4118729.6/621.6
m = 6626 g
You would need exactly 50 molecules of glucose.