Answer:
0.5 atm is equal to 380mmHg.
Explanation:
For every 1 atm, it is equal to 760mmHg.
Therefore, 0.5 atm is 760/2, which is 380mmHg.
Answer:
I. dipole-dipole
III. dispersion
IV. hydrogen bonding
Explanation:
Intermolecular forces are weak attraction force joining nonpolar and polar molecules together.
London Dispersion Forces are weak attraction force joining non-polar and polar molecules together. e.g O₂, H₂,N₂,Cl₂ and noble gases. The attractions here can be attributed to the fact that a non -polar molecule sometimes becomes polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant.
Dispersion forces are the weakest of all electrical forces that act between atoms and molecules. The force is responsible for liquefaction or solidification of non-polar substances such as noble gas an halogen at low temperatures.
Dipole-Dipole Attractions are forces of attraction existing between polar molecules ( unsymmetrical molecules) i.e molecules that have permanent dipoles such as HCl, CH3NH2 . Such molecules line up such that the positive pole of one molecule attracts the negative pole of another.
Dipole - Dipole attractions are more stronger than the London dispersion forces but weaker than the attraction between full charges carried by ions in ionic crystal lattice.
Hydrogen Bonding is a dipole-dipole intermolecular attraction which occurs when hydrogen is covalently bonded to highly electronegative elements such as nitrogen, oxygen or fluorine. The highly electronegative elements have very strong affinity for electrons. Hence, they attracts the shared pair of electrons in the covalent bonds towards themselves, leaving a partial positive charge on the hydrogen atom and a partial negative charge on the electronegative atom ( nitrogen in the case of CH3NH2 ) . This attractive force is know as hydrogen bonding.
Answer:
1 mol SO2 contains 6.0213*10^23 molecules
6.023*10^24 molecules = 10 mol SO2
Equation
S(s) + O2(g) → SO2(g)
1 mol S reacts with 1 mol O2 to prepare 1 mol SO2
To prepare 10 mol SO2 you require : 10 mol S plus 10 mol O2
And that is the answer to the question
If you want a mass :
Molar mass S = 32 g/mol You require 10 mol = 320 g
Molar mass O2 = 32 g/mol :You require 10 mol = 320 g
Explanation:
If water is ice-form, only the gap between molecules reduces but the molecule remains the same. The gap between liquid water molecules is greater than that between the molecules. That's why ice is thinner than water.
The intermolecular gap now increases in the gaseous form, which makes it less heavier than solid ice and liquid water. However, the molecule still remain the same.