Using the answer from the first part, we know that 2.957 moles of bismuth have formed. Moreover, the molar ratio between bismuth and carbon monoxide is:
2 : 3
Using the method of ratios,
2 : 3
2.957 : CO
CO = (3 * 2.957) / 2
CO = 4.4355
4.436 moles of carbon monoxide will be formed
Answer:
Kc for this reaction is 0.43
Explanation:
This is the equilibrium:
N₂(g) + 2H₂O(g) → 2NO(g) +2H₂(g)
And we have all the concentration at equilibrium:
N₂: 0.25M
H₂ : 1.3M
NO: 0.33M
H₂: 1.2M
They are ok, because they are in MOLARITY. (mol/L)
Let's make the expression for Kc
Kc = ( [NO]² . [H₂]² ) / ([N₂] . [H₂O]²)
Kc = (0.33² . 1.2²) / (0.25 . 1.2²)
Kc = 0.4356
In two significant digits. 0.43
The answer should be hydrogen bonding. Water only has oxygen and hydrogen in it, which are both nonmetals, so you know the answer cannot be metallic or ionic. It also cannot be nonpolar because the electronegativity of the oxygens will make the molecule polar. You can also know it is hydrogen bonding because it can only take place when a hydrogen is attached to an oxygen, fluorine, or nitrogen. These bonds are very strong attractions, so the molecules are extremely hard to pull apart, creating a high boiling point. Hope that helps!
As a base is added to an acidic solution, the H+ ions in solution that make it acidic are slowly neutralized into water (via OH-, the base). As these ions are converted into water the concentration of them decreases, so the pH decreases, as they are directly related.
Hope this helps!
Answer:
Molar mass
Explanation:
This is a counting unit which represents the mass in grams of a substance that make up one mole of the substance. This mass is calculated as follows:
Molar mass = Mass/ Number of moles
Units: grams/mol