Answer:
are easily broken
Explanation:
The double covalent bond within unsaturated hydrocarbons are easily broken.
Answer:
Here's what I find.
Explanation:
Iodine-131
Iodine-131 is both a beta emitter and a gamma emitter.

About 90 % of the energy is β-radiation and 10 % is γ-radiation. Both forms are highly energetic.
The main danger is from ingestion. The iodine concentrates in thyroid gland, where the β-radiation destroys cells up to 2 mm from the tissues that absorbed it.
Both the β- and γ-radiation cause cell mutations that can later become cancerous. Small doses, such as those absorbed from the nuclear disasters in the Ukraine and Japan, can cause cancers years after the original iodine has disappeared.
Plutonium-239
Plutonium-239 is an alpha emitter.

Alpha particles cannot penetrate the skin, so external exposure isn't much of a health risk.
However, they are extremely dangerous when they are inhaled and get inside cells. They travel first to the blood or lymph system and later to the bone marrow and liver, where they cause up to 1000 times more chromosomal damage than beta or gamma rays.
It takes about 20 years for plutonium to be eliminated from the liver around 50 years for from the skeleton, so it has a long time to cause damage.
Answer:
An example for gaining potential energy would be: A glass bottle on the top of a high shelf would have more high potential energy than a glass bottle on the middle or bottom shelf because it has a long way or more farther to fall down or brake.
Explanation:
Remember Potential Energy is the restored energy of an object has.
I hope this helps you!
Adding a catalyst as this would speed up the reaction and the rest would slow it down
Answer: 6,25 moles
Explanation: mark amount of butane x.
From equation you can calculate x in a following way:
2/x = 8/25. 8x = 50. And x = 6,25