I. The solubility of NaCl at 25 degrees C would be between the solubilities at 20 and 30 degrees C. A reasonable answer would be 36 grams/100 g water
ii. From the table, it’s clear that the salts are more soluble at higher temperatures, indicating that an increase in temperature increases solubility.
iii. At 50 degrees C, a saturated ammonium chloride solution will have 50.6 grams of salt per 100 g water. At 20 degrees C, the solution can hold only 37.3 grams of salt per 100 g water. Thus, 13.3 grams of salt will precipitate per 100 grams of water.
Solids have a definite shape and volume. They are always the same shape no matter what they are contained in; their volume is also the same because they don't change unless you add or take away from it.
____________________________________________________________
Liquids have an indefinite shape but definite volume. They expand to fill out the space they are contained in, but their volume doesn't change unless you take out or add more of the liquid.
Gases have an indefinite shape and volume. Gases expand to fill out the space they are in and also don't have a clear shape because they are not always in one form.
To get the theoretical yield of ammonia NH3:
first, we should have the balanced equation of the reaction:
3H2(g) + N2(g) → 2NH3(g)
Second, we start to convert mass to moles
moles of N2 = N2 mass / N2 molar mass
= 200 / 28 = 7.14 moles
third, we start to compare the molar ratio from the balanced equation between N2 & NH3 we will find that N2: NH3 = 1:2 so when we use every mole of N2 we will get 2 times of that mole of NH3 so,
moles of NH3 = 7.14 * 2 = 14.28 moles
finally, we convert the moles of NH3 to mass again to get the mass of ammonia:
mass of NH3 = no.moles * molar mass of ammonia
= 14.28 * 17 = 242.76 g