Answer:
0.43 s
Explanation:
We have the following parameters:
Initial velocity, u = 7.4 m/s
Acceleration of gravity, g = 9.8 
Distance, s = 43 in + 10 ft = 1.092 m + 3.048 m = 4.14 m
Time, t = ?
Using the equation of motion
, we have


Using the quadratic formula
where a = 4.9, b = 7.4 and c = - 4.14, and solving for the positive value of t only, we have
s
The 'strength' of the electric field is the force on 1C of charge at that point.
At this 'certain location', the field is 40/5 = 8 newtons per coulomb = <u>8 volts</u>
Answer:
E=12.2V/m
Explanation:
To solve this problem we must address the concepts of drift velocity. A drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.
The equation is given by,

Where,
V= Drift Velocity
I= Flow of current
n= number of electrons
q = charge of electron
A = cross-section area.
For this problem we know that there is a rate of 1.8*10^{18} electrons per second, that is



Mobility
We can find the drift velocity replacing,


The electric field is given by,


