Gave him good advice to others
Ans: Beat Frequency = 1.97HzExplanation:
The fundamental frequency on a vibrating string is

<span> -- (A)</span>
<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>
Plug in the values in Equation (A)
<span>so </span>

<span> = 197.97Hz </span>
<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
Answer:
I believe the answer is C
Explanation:
In order to overcome an object’s inertia (resistance to change), it must be acted upon by an unbalanced force, so the answer to the problem is letter C.
Answer:
6.746 ft/s^2
Explanation:
v(t)=50
v(0)=27
t=5/3600 = 1/720 hours
v(t)-v(0)= a(t-0)
50-27= a(1/720)
a= 23*720= 16560 mi/h^2
16560mi/h^2 * 5280/3600^2 (ft/s^2) =6.746 ft/s^2