Answer:
![Ka=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OH]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OH%5D%7D)
Explanation:
Hello,
In this case, weak acids are characterized by the fact they do not dissociate completely, it means they do not divide into the conjugated base and acid at all, a percent only, which is quantified via equilibrium. In such a way, the chemical equation representing such incomplete dissociation is said to be:

Thus, we can write the law of mass action, which consider the equilibrium concentrations of all the involved species, which is also known as the acid dissociation constant which accounts for the capacity the acid has to yield hydronium ions:
![K=Ka=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OH]}](https://tex.z-dn.net/?f=K%3DKa%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OH%5D%7D)
Best regards.
I don't know what you are asking but AC= Alternative current
V= Volt
Answer:
-3
Explanation:
The oxidation state or oxidation number of an atom is the total number of electrons that an atom either gains or loses in order to form a chemical bond with another atom.
The complex anion here is [Cr(CN)6]3-.
Now, as the oxidation state of CN or cyanide ligand is -1, and if we suppose the oxidation state of Cr to be 'x', then; x - 6 = -3 (overall charge on the anion),
so x= +3. Hence the oxidation state of Chromium in this complex hexacyanochromium (III) anion comes out to be -3.
.
As temperature increases, the molecules and atoms move faster. :^)
Calculate the pOH first :
pOH =14-8.57=5.43
(OH)=10^-5.47
(OH)=3.72 x 10^-6 mol/L