Answer:
due to production of heat through friction
Answer:
See answers below
Explanation:
a.
F = mg,
15.5 N = m(9.8 m/s²)
m = 1.58 kg
b.
Fnet = Applied force - resistance,
Fnet = 18 N - 4.30 N,
Fnet = 13.70 N
Fnet = ma
13.70 N = (1.58 kg)a
a = 8.67 m/s²
For the free body diagram, draw a box with an upward arrow labeled 15.5 N, a downward label labeled 15.5 N, a right label labeled 18 N, and a left label labeled 4.30 N.
Answer:
<u>The magnitude of the friction force is 8197.60 N</u>
Explanation:
Using the definition of the centripetal force we have:

Where:
- m is the mass of the car
- v is the speed
- R is the radius of the curvature
Now, the force acting in the motion is just the friction force, so we have:
<u>Therefore the magnitude of the friction force is 8197.60 N</u>
I hope it helps you!
An echo
Refraction
Diffraction
Transmission
reflection
b. 460.8 m/s
Explanation:
The relationship between the speed of the wave along the string, the length of the string and the frequency of the note is

where v is the speed of the wave, L is the length of the string and f is the frequency. Re-arranging the equation and substituting the data of the problem (L=0.90 m and f=256 Hz), we can find v:

c. 18,000 m
Explanation:
The relationship between speed of the wave, distance travelled and time taken is

where
v = 6,000 m/s is the speed of the wave
d = ? is the distance travelled
t = 3 s is the time taken
Re-arranging the formula and substituting the numbers into it, we find:
